- •А.П. Ротштейн Интеллектуальные технологии идентификации
- •Глава 1
- •1.1. Нечеткие множества
- •1.1.1. Основные понятия теории нечетких множеств
- •1.1.2. Свойства нечетких множеств
- •1.1.3. Операции над нечеткими множествами
- •1.1.4. Некоторые дополнительные понятия
- •1.1.5. Нечеткие отношения
- •1.1.6. Нечеткие числа
- •1.1.7. Нечеткость и вероятность
- •1.2. Генетические алгоритмы
- •1.2.1. Принципы построения генетических алгоритмов
- •1.2.2. Основные операции генетических алгоритмов
- •1.2.3. Стратегии поиска
- •1.2.4. Отличие от классического поиска
- •1.2.5. Преимущества генетических алгоритмов
- •1.2.6. Терминология
- •1.2.7. Примеры генетической оптимизации
- •1.3. Нейронные сети
- •1.3.1. Основные понятия
- •1.3.2. Имитация нервных клеток
- •1.3.4. Обучение нейронных сетей
- •1.3.5. Метод обратного распространения ошибки
- •Глава 2
- •2.1. Лингвистические правила в принятии решений
- •2.1.1. Автоматическое управление
- •2.1.2. Ситуационное управление
- •2.1.3. Медицинская диагностика
- •2.1.4. Многокритериальная оценка
- •2.1.5. Многофакторный анализ
- •2.2. Принятие решений и идентификация
- •2.3. Принципы лингвистического моделирования
- •Глава 3
- •3.1. Формализация исходной информации
- •3.1.1. Входы и выходы объекта
- •3.1.2. Лингвистические переменные
- •3.1.3. Нечеткая база знаний
- •3.1.4. Функции принадлежности
- •3.2. Объекты с дискретным выходом
- •3.2.1. Постановка задачи
- •3.2.2. Нечеткие логические уравнения
- •3.2.3. Алгоритм аппроксимации
- •3.3. Объекты с непрерывным выходом
- •3.3.1. Постановка задачи
- •3.3.2. Алгоритм аппроксимации
- •3.4. Применение композиционного правила вывода
- •3.4.1. Постановка задачи
- •3.4.2. Нечеткий логический вывод
- •3.4.3. Интерпретация вывода
- •3.5. Иерархические объекты
- •3.5.1. Обобщенное дерево логического вывода
- •3.5.2. Нечеткие логические уравнения
- •Глава 4
- •4.1. Нечеткое представление неопределенных параметров
- •4.2. Учет влияющих факторов
- •4.3. Нечеткое обобщение аналитических моделей
- •4.3.1. Принцип обобщения Заде
- •4.3.3. Модифицированный принцип обобщения
- •4.4. Методика нечеткого обобщения аналитических моделей
- •Глава 5
- •5.1. Задачи оптимальной настройки
- •5.1.1. Веса правил
- •5.1.2. Объект с непрерывным выходом
- •5.1.3. Объект с дискретным выходом
- •5.1.4. Критерии качества идентификации
- •5.2. Настройка параметрических функций принадлежности
- •5.2.1. Кодирование
- •5.2.2. Скрещивание
- •5.2.3. Мутация
- •5.2.4. Функция соответствия
- •5.2.5. Выбор родителей
- •5.2.6. Генерация популяции
- •5.2.7. Генетический алгоритм
- •5.3. Настройки -уровневых функций принадлежности
- •5.3.1. Аналитические модели функций принадлежности
- •5.3.2. Настройки модели с дискретным выходом
- •5.3.3. Настройки модели с непрерывным выходом
- •5.3.4. Кодирование и скрещивание
- •5.3.5. Мутация
- •5.3.6. Функция соответствия
- •5.3.7. Генерация популяции
- •5.3.8. Генетический алгоритм
- •5.4. Компьютерные эксперименты
- •5.4.1. Методика экспериментов
- •5.4.2. Объекты с непрерывным выходом
- •5.4.3. Объекты с дискретным выходом
- •5.4.4. Исследование -уровневой настройки
- •5.5. Извлечение знаний из экспериментальных данных
- •5.5.1. Постановка задачи
- •5.5.2. Критерий оптимизации
- •5.5.3. Генетический алгоритм оптимизации
- •5.5.4. Пример
- •5.6. Объект "много входов - много выходов"
- •Глава 6
- •6.1. Нейронная идентификация
- •6.1.1. Нейронная сеть как универсальный аппроксиматор
- •6.1.2. Обучение нейронной сети
- •6.1.3. Компьютерные эксперименты
- •6.2.1. Лингвистический аппроксиматор
- •6.2.2. Нейро-лингвистический аппроксиматор
- •6.2.3. Обучение нейро-нечеткой сети
- •6.2.4. Компьютерные эксперименты
- •6.3. Сравнение с нейронной идентификацией
- •Глава 7
- •7.1. Принцип слияния целей и ограничений
- •7.1.1. Нечёткие цели и ограничения
- •7.1.2. Нечёткие решения
- •7.2. Метод построения функции принадлежности
- •7.2.1.Постановка задачи
- •7.2.2. Основные определения и соотношения
- •7.2.3. Алгоритм построения функции принадлежности
- •7.3. Многокритериальный анализ вариантов
- •7.3.1. Общие принципы
- •7.3.2. Критерии как нечеткие множества
- •7.3.3. Равновесные критерии
- •7.3.4. Неравновесные критерии
- •7.4. Пример многокритериального анализа
- •7.4.1.Критерии оценки вариантов
- •Глава 8
- •8.1. Система fuzzy expert
- •8.1.1. Структура системы
- •8.1.2. Экранные формы
- •8.2. Диагностика ишемической болезни сердца
- •8.2.1. Типы диагнозов и параметры состояния больного
- •8.2.2. Нечеткая база знаний
- •8.2.3. Нечеткие логические уравнения
- •8.2.4 Грубые функции принадлежности
- •8.2.5. Алгоритм принятия решения
- •8.2.6. Тонкая настройка нечеткой базы знаний
- •8.3. Прогнозирование количества заболеваний
- •8.3.1. Экспериментальные данные
- •8.3.2. Экспертно-лингвистические закономерности
- •8.3.3. Модель прогнозирования
- •8.3.4. Настройка модели прогнозирования
- •8.4. Идентификация коэффициента сцепления "автомобиль-дорога"
- •8.4.1. Методика идентификации
- •8.4.2. Структурная идентификация
- •8.4.3. Параметрическая идентификация
- •8.4.4. Пример и сравнение с действующей методикой
- •8.5. Многофакторный анализ технологического процесса биоконверсии
- •8.5.1. Этапы и принципы моделирования
- •8.5.2. Дерево вывода
- •8.5.3. Нечеткие матрицы знаний
- •8.5.4. Нечеткий логический вывод и дефаззификация
- •8.5.5. Примеры моделирования
- •8.6. Оценка дипломных проектов
- •8.6.1. Интегральные и частные показатели
- •8.6.2. Уровни качества
- •8.6.3. Оценка частных показателей по принципу термометра
- •8.6.4. Оценка интегрального показателя
- •8.6.5. Возможные обобщения
- •8.7. Оценка кредитоспособности инновационных проектов
- •8.7.1. Типы решений и частные показатели качества
- •8.7.2. Нечеткие базы знаний
- •8.7.3. Функции принадлежности и примеры оценки
- •8.8. Управление динамической системой
- •8.8.1. Объект управления
- •8.8.2. Классическая модель управления
- •8.8.3. Нечеткая модель управления
- •8.8.4. Связь с функциями Ляпунова
7.3.2. Критерии как нечеткие множества
Пусть
-
число в диапазоне [0,1], которое
характеризирует уровень оценки
варианта
по
критерию
:
чем больше число
,
тем выше оценка варианта по критерию
,
,
.
Тогда критерий
можно
представить в виде нечеткого множества
,
которое задано на универсальном
множестве
таким
образом:
(7.14)
где
-
степень принадлежности элемента
к
нечеткому множеству
.
Чтобы определить степени принадлежности, которые входят в (7.14)' воспользуемся методом, предложенным в работе [17]. Для этого сформируем матрицы парных сравнений вариантов по каждому критерию. Общее количество таких матриц совпадает с количеством критериев и равняется m.
Для критерия матрица парных сравнений имеет вид:
.
. .
(7.15)
где
элемент
оценивается
экспертом за 9-тибальной шкалой Саати:
1 -
если отсутствует
преимущество варианта
над
вариантом
;
3 - если имеется слабое преимущество над ;
5 - если имеется существенное преимущество над ;
7 - если имеется явное преимущество над ;
9- если имеется абсолютное преимущество над ;
2,4,6,8 - промежуточные сравнительные оценки.
Знание
матрицы (7.15) позволяет с использованием
метода Саати проранжировать каждый
вариант
по
каждому критерию
.
Для вычисления рангов в соответствии
с методикой, впервые предложенной в
работе [49] и далее развивающейся в работе
[48], необходимо найти собственный вектор
матрицы (7.15). Для получения первых
приближений искомых характеристик
рангов можно пользоваться процедурой,
предложенной в [75], которая предполагает,
что матрица (7.15) имеет такие свойства:
- она
диагональна' то есть
=1'
;
-
элементы' которые симметричны относительно
главной диагонали' связаны зависимостью
=
;
- она
транзитивна' т. е.
.
Наличие
этих свойств позволяет определить все
элементы матрицы (7.15) по элементам одной
из строк. Если известна k-тая
строка' т. е. элементы
'
то произвольный элемент
определяется
так:
После определения всех элементов матрицы (7.15) степени принадлежности' необходимые для формирования нечеткого множества (7.14)' вычисляются по формуле [75]:
(7.16)
Уточнение оценок рангов может быть выполнено с использованием метода анализа иерархий [48] на основе матрицы (7.15), не обладающей вышеуказанными ограничениями: транзитивностью и симметричностью.
7.3.3. Равновесные критерии
Базируясь
на принципе Беллмана-Заде [5], наилучшей
системой будем считать ту, которая
одновременно лучшая по критериям
,
,
... ,
.
Поэтому нечеткое множество, которое
необходимо для рейтингового анализа,
определяется в виде пересечения
(интегральный критерий оценки систем):
.
Учитывая
то' что в теории нечетких множеств
операции пересечения
соответствует min'
получаем:
(7.17)
Согласно с полученным множеством ' наилучшей системой следует считать тот вариант' для которого степень принадлежности (числитель) является наибольшей.
