- •Раздел 1. Модели линейного программирования и его приложения Тема 1. Математическое моделирование экономических систем
- •1.1. Описание процесса математического моделирования.
- •1.2. Примеры построения математических моделей простейших экономических задач
- •1. Задача об использовании ресурсов (планирование производства, задача оптимального использования удобрений и т.Д.).
- •2. Оптимальное смешивание (составление рациона питания, смесей, задача о диете и т.Д.).
- •3. Задача об использовании мощностей (задача о загрузке оборудования)
- •4. Задача о раскрое материалов
- •Задача о закреплении самолетов за воздушными линиями.
- •Контрольные вопросы
- •Рекомендованная литература: [ 3, 8, 11, 12] Тема 2. Линейные векторные пространства
- •Понятие n-мерного пространства
- •Линейная зависимость векторов
- •2.3. Базис n-мерного векторного пространства
- •2.4. Система единичных векторов n-мерного векторного пространства
- •2.5. Решение системы линейных уравнений методом Жордана – Гаусса
- •Контрольные вопросы
- •Для приведения неравенства к равенству необходимо к его левой части прибавить неотрицательную величину . (2)
- •Пусть удовлетворяет уравнению (3) и неравенству (2), т.Е.
- •3.2. Выпуклые множества
- •3.3. Геометрическая интерпретация задачи линейного программирования
- •3.4. Свойства решений задачи линейного программирования
- •Контрольные вопросы
- •Примеры задач, решаемых графическим методом.
- •4.2. Графический метод решения злп с n переменными
- •Контрольные вопросы
- •5.2. Алгоритм симплекс-метода
- •5.3. Пример отыскания максимума линейной функции
- •5.4. Пример отыскания минимума линейной функции
- •Решение. Введем дополнительные неотрицательные переменные y5, y6 со знаком “-”, т.К. Неравенства имеют вид ””:
- •Симплексные таблицы
- •В общем случае достаточно воспользоваться правилом:
- •5.6. Метод искусственного базиса
- •Контрольные вопросы
- •Предположим, что некоторая организация решила закупить ресурсы s1, s2,…, Sm предприятия и необходимо установить оптимальные цены на эти ресурсы y1,y2,…,ym.
- •Аналогично стоимость всех затраченных ресурсов, идущих на изготовление единицы j-ой продукции, не может быть меньше стоимости окончательного продукта, т.Е.
- •6.2. Взаимно двойственные задачи линейного программирования и их свойства
- •6.3. Первая теорема двойственности
- •6.4. Вторая теорема двойственности
- •Рассмотренная теорема является следствием следующей теоремы.
- •6.5. Объективно обусловленные оценки и их смысл
- •Контрольные вопросы
- •7.2. Нахождение опорного плана
- •Пример 1. Исходные данные приведены в таблице 1.
- •7.3. Метод последовательного улучшения плана перевозок, цикл пересчета
- •7.4. Решение транспортной задачи методом потенциалов
- •Приложения транспортной задачи к решению некоторых экономических задач
- •Контрольные вопросы
- •Понятие цикла. Рекомендованная литература: [ 3, 5, 6, 7, 8, 11]
- •Тема 8. Элементы теории матричных игр
- •8.1. Предмет теории игр, основные понятия
- •8.2. Платежная матрица. Нижняя и верхняя цена игры
- •8.3. Решение игры в смешанных стратегиях
- •Решая эту систему, получим оптимальную стратегию:
- •8.4. Геометрическая интерпретация игры 2 х 2
- •8.5. Приведение матричной игры к задаче линейного программирования
- •Составив расширенные матрицы для задач, убеждаемся, что одна матрица получилась из другой транспонированием:
- •Контрольные вопросы
- •Графический метод решения игры mx2. Рекомендованная литература: [ 1, 2, 4, 9, 12] раздел 2. Модели нелинейного программирования
- •Тема 9. Нелинейное программирование
- •9.1. Общая задача нелинейного программирования
- •9.2. Метод множителей Лагранжа
- •9.3. Обобщёние метода множителей Лагранжа
- •9.4. Теорема Куна-Таккера
- •9.5. Модели выпуклого программирования
- •9.6. Приближенное решение задач выпуклого программирования методом кусочно-линейной аппроксимации
- •Контрольные вопросы
- •Задачі про мінімізацію розходу горючого літаком за набором висоти та швидкості. Рекомендованная литература: [ 3, 6, 7, 8, 11] Бібліографічний список
9.5. Модели выпуклого программирования
Пусть дана система неравенств вида
i(x1, x2, ... , xn) bi , i=1,2,...,m (1)
x1, x2, ... ,xn 0,
и функция Z=f(x1, x2, ... , xn), (2)
причем все функции i(Х) являются выпуклыми на некотором выпуклом множестве М, а функция Z либо выпукла на множестве М, либо вогнута.
Задача выпуклого программирования (ВП) состоит в отыскании такого решения системы ограничений (1), при котором целевая функция Z достигает минимального значения, или вогнутая функция Z достигает максимального значения.
Напомним, что множество точек называется выпуклым, если оно вместе с любыми своими двумя точками содержит и весь отрезок, соединяющий эти точки. Если [a,b] – отрезок на числовой прямой и х[a,b], то х=a+(1-)b, 01 или
х=1a+2b, 1+2=1, 10, 20. (*)
Нетрудно видеть и обратное: если выполняется (*), то х[a,b].
Исходя
из равенства (*) видно, что если М –
выпуклое пространство, то
для
любых точек X1,…,Xr
M
и любых действительных чисел ti
0,
удовлетворяющих условию
.
Функция F(X)=F(x1, x2, ... , xn), определенная на выпуклом множестве М n-мерного пространства, называется выпуклой на этом множестве, если
F(X1 +(1-)X2) F(X1 )+(1-)F(X2 ),
вогнутой на этом множестве, если F(X1 +(1-)X2) F(X1 )+(1-)F(X2 ),
строго выпуклой на этом множестве, если F(X1 +(1-)X2)> F(X1 )+(1-)F(X2 )
строго вогнутой на этом множестве, если F(X1 +(1-)X2)< F(X1 )+(1-)F(X2 ),
для любых точек Х1, Х2 М и любого числа [0,1].
Алгебраические и аналитические свойства выпуклых функций:
если функция F(X) выпукла, то функция - F(X) вогнута.
функция F(X)=С и линейная функция F(X)= aХ+b являются всюду выпуклыми и всюду вогнутыми.
если функции Fi(X), I=1,2,…,m выпуклы, то при любых действительных числах I0 функция
также выпукла.если функция F(X) выпукла, то для любого числа область решений неравенства F(X)< является выпуклым множеством, либо пустым.
если функции I(X) выпуклые при всех неотрицательных значениях переменных, то область решений системы неравенств I(X)bi, I=1,…,m является выпуклым множеством (если она не пуста).
выпуклая (вогнутая) функция, определенная на выпуклом множестве М, непрерывна в каждой внутренней точке этого множества.
всякая дифференцируемая строго выпуклая (вогнутая) функция имеет не более одной стационарной точки (т.е. точки, в которой равны 0 все частные производные). При этом для выпуклой (вогнутой) функции стационарная точка всегда является точкой локального и глобального минимума (максимума).
дважды дифференцируемая функция F(X)= F(x1, x2, ... ,xn) является выпуклой в том и только в том случае, когда
для
любых Х М
и xi
, xj,
не обращающихся в 0 одновременно.
Ввиду свойства 3 всякая ЗЛП является частным случаем задачи ВП. В общем случае задачи ВП являются ЗНП.
Выделение задач ВП в специальный класс объясняется экстремальными свойствами выпуклых функций:
всякий локальный минимум выпуклой функции (локальный максимум вогнутой функции) является одновременно и глобальным;
ввиду свойства 2 выпуклая (вогнутая) функция, заданная на замкнутом ограниченном множестве, достигает на этом множестве глобального максимума и глобального минимума.
Отсюда вытекает, что если целевая функция является строго выпуклой (строго вогнутой) и если область решений системы ограничений не пуста и ограничена, то ЗВП всегда имеет единственное решение. В этом случае минимум выпуклой (максимум вогнутой) функции достигается внутри области решений, если там имеется стационарная точка, или на границе этой области, если внутри нет стационарной точки.
