- •Раздел 1. Модели линейного программирования и его приложения Тема 1. Математическое моделирование экономических систем
- •1.1. Описание процесса математического моделирования.
- •1.2. Примеры построения математических моделей простейших экономических задач
- •1. Задача об использовании ресурсов (планирование производства, задача оптимального использования удобрений и т.Д.).
- •2. Оптимальное смешивание (составление рациона питания, смесей, задача о диете и т.Д.).
- •3. Задача об использовании мощностей (задача о загрузке оборудования)
- •4. Задача о раскрое материалов
- •Задача о закреплении самолетов за воздушными линиями.
- •Контрольные вопросы
- •Рекомендованная литература: [ 3, 8, 11, 12] Тема 2. Линейные векторные пространства
- •Понятие n-мерного пространства
- •Линейная зависимость векторов
- •2.3. Базис n-мерного векторного пространства
- •2.4. Система единичных векторов n-мерного векторного пространства
- •2.5. Решение системы линейных уравнений методом Жордана – Гаусса
- •Контрольные вопросы
- •Для приведения неравенства к равенству необходимо к его левой части прибавить неотрицательную величину . (2)
- •Пусть удовлетворяет уравнению (3) и неравенству (2), т.Е.
- •3.2. Выпуклые множества
- •3.3. Геометрическая интерпретация задачи линейного программирования
- •3.4. Свойства решений задачи линейного программирования
- •Контрольные вопросы
- •Примеры задач, решаемых графическим методом.
- •4.2. Графический метод решения злп с n переменными
- •Контрольные вопросы
- •5.2. Алгоритм симплекс-метода
- •5.3. Пример отыскания максимума линейной функции
- •5.4. Пример отыскания минимума линейной функции
- •Решение. Введем дополнительные неотрицательные переменные y5, y6 со знаком “-”, т.К. Неравенства имеют вид ””:
- •Симплексные таблицы
- •В общем случае достаточно воспользоваться правилом:
- •5.6. Метод искусственного базиса
- •Контрольные вопросы
- •Предположим, что некоторая организация решила закупить ресурсы s1, s2,…, Sm предприятия и необходимо установить оптимальные цены на эти ресурсы y1,y2,…,ym.
- •Аналогично стоимость всех затраченных ресурсов, идущих на изготовление единицы j-ой продукции, не может быть меньше стоимости окончательного продукта, т.Е.
- •6.2. Взаимно двойственные задачи линейного программирования и их свойства
- •6.3. Первая теорема двойственности
- •6.4. Вторая теорема двойственности
- •Рассмотренная теорема является следствием следующей теоремы.
- •6.5. Объективно обусловленные оценки и их смысл
- •Контрольные вопросы
- •7.2. Нахождение опорного плана
- •Пример 1. Исходные данные приведены в таблице 1.
- •7.3. Метод последовательного улучшения плана перевозок, цикл пересчета
- •7.4. Решение транспортной задачи методом потенциалов
- •Приложения транспортной задачи к решению некоторых экономических задач
- •Контрольные вопросы
- •Понятие цикла. Рекомендованная литература: [ 3, 5, 6, 7, 8, 11]
- •Тема 8. Элементы теории матричных игр
- •8.1. Предмет теории игр, основные понятия
- •8.2. Платежная матрица. Нижняя и верхняя цена игры
- •8.3. Решение игры в смешанных стратегиях
- •Решая эту систему, получим оптимальную стратегию:
- •8.4. Геометрическая интерпретация игры 2 х 2
- •8.5. Приведение матричной игры к задаче линейного программирования
- •Составив расширенные матрицы для задач, убеждаемся, что одна матрица получилась из другой транспонированием:
- •Контрольные вопросы
- •Графический метод решения игры mx2. Рекомендованная литература: [ 1, 2, 4, 9, 12] раздел 2. Модели нелинейного программирования
- •Тема 9. Нелинейное программирование
- •9.1. Общая задача нелинейного программирования
- •9.2. Метод множителей Лагранжа
- •9.3. Обобщёние метода множителей Лагранжа
- •9.4. Теорема Куна-Таккера
- •9.5. Модели выпуклого программирования
- •9.6. Приближенное решение задач выпуклого программирования методом кусочно-линейной аппроксимации
- •Контрольные вопросы
- •Задачі про мінімізацію розходу горючого літаком за набором висоти та швидкості. Рекомендованная литература: [ 3, 6, 7, 8, 11] Бібліографічний список
1.2. Примеры построения математических моделей простейших экономических задач
1. Задача об использовании ресурсов (планирование производства, задача оптимального использования удобрений и т.Д.).
При выпуске n видов продукции используются m видов сырья. Обозначим через
Si (i=1,2,...,m) - виды сырья;
bi - запасы сырья i-го вида;
Pj (j=1,2,....n) - виды продукции;
aij - количество единиц i-го сырья, идущего на изготовление единицы j-й продукции;
Cj - величина прибыли, полученная при реализации единицы j-й продукции. Все данные можно свести в таблицу (см. табл. 1.).
-
Вид сырья
Запас сырья
Количество единиц i-го сырья, идущего на изготовление единицы j-й продукции
P1
P2
...
Pn
S1
b1
a11
a12
...
a1n
S2
b2
a21
a22
...
a2n
...
...
...
...
...
Sm
bm
am1
am2
...
amn
Прибыль от единицы продукции в грн.
C1
C2
...
Cn
Необходимо составить такой план выпуска продукции, чтобы при ее реализации получить максимальную прибыль.
Пусть xj - количество единиц j-й продукции, которую необходимо произвести.
Тогда математическая модель задачи имеет следующий вид: найти максимальное значение линейной функции L=C1x1+C2x2++Cnxn (1) при ограничениях:
(2)
xj 0, (j=1,2,,n), bi 0 (i=1,2, ,m). (3)
Элементы таблицы aij образуют матрицу, имеющую m строк и n столбцов, показывающую количество единиц i-го сырья, идущего на изготовление единицы j-й продукции, которую назовем технологической матрицей и обозначим через A; количество bi ресурсов выразим вектором B=(b1,b2,...,bm) (вектор ресурсов). Назовем планом производства вектор X=(x1,x2,...,xn), показывающий, какие количества товаров P1,P2,...,Pn будут произведены. Цены на продукты производства обозначим как вектор C=(C1,C2,...,Cn).
Представленная модель, хотя и отражает определенные черты реального производства, тем не менее, сильно идеализирована. Так в ней отсутствует такое важное для производства понятие, как время. Считается также, что все необходимые ресурсы S1,S2,...,Sm в нужный момент находятся под рукой. Тем самым мы абстрагировались от острых проблем динамики производства и ритмичности поставок. Здесь также не учитываются затраты живого труда и целый ряд других показателей.
К этому же классу задач относится задача оптимального использования удобрений.
Пусть для выращивания некоторой культуры применяется m видов удобрений соответственно в количестве bi (I=1,2,…,m) единиц. Вся посевная площадь разбита на n почвенно-климатических зон по dj (j=1,2,…,n) единиц. Пусть aij количество i-го удобрения, вносимого на единицу площади j-ой зоны, а Сj – повышение средней урожайности, получаемой с единицы площади j-й зоны. Составить такой план распределения удобрений между посевными зонами, который обеспечивал бы максимальный суммарный прирост урожайности культуры.
Обозначим через xj (j =1,2,…,n) площадь j-й зоны, которую необходимо удобрить, тогда, математическая модель задачи имеет следующий вид:
найти
максимальное значение линейной функции
L=
при ограничениях:
,
i=1,2,…,m,
0xjdj
, j=1,2,…,n.
Пример1. Для изготовления двух видов продукции P1, P2 используются 4 вида сырья (ресурсов) S1, S2, S3, S4. Запасы сырья, количество единиц сырья, затраченных на изготовление единицы продукции, а также величина прибыли, полученной от реализации одной единицы продукции, приведены в таблице 2.
Необходимо составить такой план выпуска продукции, чтобы при ее реализации получить максимальную прибыль.
Таблица 2.
-
Вид сырья
Запас сырья
Количество единиц сырья на одну единицу продукции
P1
P2
S1
18
1
3
S2
16
2
1
S3
S4
5
21
-
3
1
-
Прибыль от единицы продукции в грн.
2
3
Решение. Составим экономико-математическую модель задачи.
Определяя через x1 количество единиц продукции P1, через x2 - количество единиц продукции P2, получим систему ограничений:
x1
0, x2
0 (4)
которая показывает, что количество сырья, расходуемое на изготовление продукции, не может превысить имеющихся запасов. Если P1 не выпускается, то x1 = 0, иначе x1 > 0. То же самое и для P2, x2 = 0 или x2 > 0. Следовательно, на x1 и x2 должно быть наложено ограничение неотрицательности: x1 0, x2 0.
Конечную цель решаемой задачи - получение максимальной прибыли при реализации продукции, выразим как функцию двух переменных x1 и x2: L=2x1 + 3x2 (грн) (5).
Таким образом, задача принимает следующий вид: необходимо найти максимальное значение линейной функции (5) при ограничениях (4).
