- •Б.Е. Байгалиев, а.В. Щелчков, а.Б. Яковлев, п.Ю. Гортышов теплообменные аппараты
- •Байгалиев б.Е.
- •Технические характеристики теплообменных аппаратов
- •Классификация теплообменных аппаратов1
- •2. Кожухотрубные теплообменные аппараты
- •Способы закрепления концов труб в трубной решетке
- •Компоновка труб в трубном пучке
- •1. 3. Секционные теплообменные аппараты и аппараты «труба в трубе»
- •Змеевиковые теплообменные аппараты
- •Трубчатые теплообменные аппараты для охлаждения воздуха и охлаждаемые воздухом
- •Оребрение Труба Схема Область применения
- •Теплообменники из полимерных материалов
- •Интенсификация теплообмена в трубчатых теплообменниках
- •Схемы устройств, применяемых для интенсификации теплоотдачи
- •Пластинчато-ребристые теплообменники
- •Пластинчатые теплообменники
- •Регенеративные теплообменные аппараты
- •Теплоносители
- •Показатели эффективности теплообменных аппаратов
- •2. Тепловой и гидромеханический расчеты кожухотрубных теплообменных аппаратов
- •Основные положения и расчетные соотношения теплового расчета теплообменного аппарата
- •Расчетные модели теплообменного аппарата
- •Конструктивные и режимные характеристики кожухотрубных та
- •Число труб в аппарате при разбивке трубной решетки по шести- угольникам и по концентрическим окружностям
- •Рекомендуемые значения w теплоносителей при вынужденном те- чении в каналах та
- •Задания на выполнение теплогидравлического расчета тепло- обменных аппаратов
- •Схемы теплогидравлических расчетов теплообменных аппаратов
- •Исходные данные на выполнение теплового и гидравлического расчета та
- •Сителей
- •Поверочный расчет авиационного кожухотрубного теплообменного аппарата
- •Задание на выполнение расчета
- •Расчет геометрических параметров
- •Тепловой расчет
- •Гидравлический расчет
- •Расчет массы матрицы теплообмена
- •Исследование работы теплообменного аппарата при имитационном моделировании1
- •4.1. Общие сведения
- •Описание экспериментальной установки
- •Порядок проведения опытов
- •Обработка результатов измерений
- •5. Испытание теплообменника
- •Классификация теплообменных аппаратов
- •Основные положения теплового расчета
- •Описание теплообменников
- •Описание экспериментального стенда
- •Методика проведения испытания
- •Обработка результатов экспериментов
- •Контрольные вопросы
- •Приложение
- •Список использованной литературы
- •Бажан п.И. И др. Справочник по теплообменным аппаратам. –
- •Оглавление
- •Теплообменные аппараты
Пластинчатые теплообменники
Пластинчатые теплообменники имеют широкое применение в тепло- энергетике, что обусловлено следующими их качествами:
высокая эффективность теплообмена и вследствие этого высокий
кпд; ям;
надежность и устойчивость к внешним и внутренним воздействи-
простота монтажа и эксплуатации, низкие трудозатраты при ре-
монте оборудования;
лёгкость очистки благодаря разборной конструкции;
небольшие массогабаритные показатели;
низкие потери давления, малая величина недогрева;
возможность изменения характеристик уже эксплуатируемого теплообменника.
В системах теплоснабжения пластинчатые теплообменники применя- ются в установках, нагревающих воду для отопления и горячего водоснабже- ния. Они имеют следующие преимущества:
повышенная надёжность системы теплоснабжения;
эффективный теплосъём в пластинчатом теплообменнике, обес- печивающий необходимую температуру воды в обратной магистрали незави- симо от условий использования;
упрощение задачи регулирования отпуска теплоты.
Существует весьма большое количество различных пластинчатых теп- лообменников. Разборные пластинчатые теплообменники состоят из набора теплообменных пластин (рис. 1.23), которые поставляются с прокладками,
уплотняющими различные каналы от воздействия атмосферного давления и отделяющими холодные и горячие потоки. Пластины в теплообменниках данного типа свариваются только с одной стороны, с другой же стороны обычно устанавливаются прокладки.
Система уплотнительных прокладок пластинчатого теплообменника построена так, что после сборки и сжатия пластин в аппарате образуются две системы герметичных каналов, изолированных одна от другой металличе- ской стенкой и прокладками: одна для горячей рабочей среды, другая – для холодной. Обе системы межпластинных каналов соединяются со своими коллекторами и далее со штуцерами для входа и выхода рабочих сред, рас- положенных на плитах.
Рис. 1.23. Принципиальная схема сборки пластинчатого аппарата: 1, 2,
11, 12 – штуцера; 3 – неподвижная плита; 4 – верхнее угловое отверстие; 5 – кольцевая резиновая прокладка; 6 – граничная пластина; 7 – штанга; 8 – на- жимная плита; 9 – задняя стойка; 10 – винт; 13 – большая резиновая проклад- ка; 14 – нижнее угловое отверстие; 15 – теплообменная пластина
Холодная рабочая среда входит в аппарат через штуцер 1, расположен- ный на неподвижной плите, и через верхнее угловое отверстие 4 попадает в продольный коллектор, образованный угловыми отверстиями пластин после
их сборки. По коллектору холодная среда доходит до пластины 6, имеющей глухой угол (без отверстия), и распределяется по нечётным межпластинным каналам, которые сообщаются (через один) с угловым коллектором благода- ря соответствующему расположению больших 13 и малых 5 резиновых про- кладок. При движении вверх по межпластинному каналу среда обтекает гоф- рированную поверхность пластин, обогреваемых с обратной стороны горячей средой. Затем подогретая среда проходит в продольный коллектор, образо- ванный нижними угловыми отверстиями 14, и выходит из аппарата через штуцер 11. Горячая рабочая среда движется в аппарате навстречу холодной. Она поступает в штуцер 12, проходит через нижний коллектор, распределя- ется по четным каналам и движется по ним вверх. Через верхний коллектор и штуцер 2 охлаждённая горячая среда выходит из теплообменника. Сами теплообменные аппараты по конструктивному оформлению весьма разнообразны.
На рис. 1.24 в качестве примера приведена конструкция в сборе одно- секционного теплообменника на двухопорной раме без дополнительных стя- жек.
Рис. 1.24. Пластинчатый односекционный теплообменник: 1 – пластины; 2, 3,
– горизонтальные штанги; 4, 5 – плиты; 6, 7 – патрубки
Пластины пластинчатых односекционных теплообменников могут быть изготовлены из различных металлов, включая нержавеющую сталь, ти- тан, никель и т.д. В качестве прокладок применяется нитроловая, бутиловая, силиконовая и фторуглеродная резина. Кроме того, определенные пластины могут быть снабжены прокладками из спрессованного волокнистого асбеста.
