-
Выравнивание с помощью ряда Фурье





Число гармоник m=1.
|
Ao |
A1 |
B1 |
S |
|
69,6563 |
2,03125 |
0,21441 |
6,62548 |
Модель:
y=69,6563+2,03125*cos(t)+0,21441*sin(t).
Теоретический ряд:
|
71,6875 |
70,63167 |
68,08645 |
67,95005 |
70,23548 |
|
71,69874 |
70,45107 |
67,96592 |
68,06833 |
70,42468 |
|
71,6903 |
70,26282 |
67,86167 |
68,2019 |
70,60647 |
|
71,66228 |
70,06873 |
67,77471 |
68,34947 |
70,77912 |
|
71,61493 |
69,87066 |
67,70586 |
68,50963 |
70,94095 |
|
71,54873 |
69,67053 |
67,6558 |
68,68083 |
71,09041 |
|
71,46429 |
69,47027 |
67,625 |
68,86143 |
71,22605 |
|
71,36245 |
69,27179 |
67,61376 |
69,04968 |
71,34658 |
|
71,24417 |
69,07702 |
67,6222 |
69,24377 |
71,45083 |
|
71,1106 |
68,88782 |
67,65022 |
69,44184 |
71,53779 |
|
70,96303 |
68,70603 |
67,69757 |
69,64197 |
71,60664 |
|
70,80287 |
68,53338 |
67,76377 |
69,84223 |
71,6567 |
|
70,63167 |
68,37155 |
67,84821 |
70,04071 |
|

Число гармоник m=2.
|
A2 |
B2 |
S |
|
-0,486 |
0,320 |
3,931 |
Модель:
y=69,6563+2,03125cos(t) +0,21441sin(t) -0,486cos(t) +0,320sin(t)
Теорeтический ряд:
|
68,889 |
70,243 |
69,481 |
70,070 |
69,603 |
|
68,970 |
70,262 |
69,435 |
70,146 |
69,467 |
|
69,069 |
70,260 |
69,407 |
70,208 |
69,332 |
|
69,184 |
70,236 |
69,397 |
70,253 |
69,204 |
|
69,310 |
70,193 |
69,407 |
70,278 |
69,087 |
|
69,443 |
70,133 |
69,436 |
70,283 |
68,984 |
|
69,578 |
70,060 |
69,483 |
70,265 |
68,900 |
|
69,711 |
69,976 |
69,545 |
70,224 |
68,837 |
|
69,837 |
69,885 |
69,621 |
70,162 |
68,798 |
|
69,953 |
69,793 |
69,707 |
70,079 |
68,783 |
|
70,054 |
69,702 |
69,799 |
69,979 |
68,794 |
|
70,137 |
69,618 |
69,893 |
69,863 |
68,830 |
|
70,201 |
69,543 |
69,985 |
69,737 |
|

Число гармоник m=3.
|
A3 |
B3 |
S |
|
-0,651 |
-0,061 |
4,505 |
Модель:
y=69,6563+2,03125cos(t) +0,21441sin(t) -0,486cos(t) +0,320sin(t) -0,651cos(t) -0,061sin(t) .
Теоритический ряд:
|
68,238 |
70,784 |
69,295 |
69,817 |
70,181 |
|
68,330 |
70,674 |
69,438 |
69,729 |
70,108 |
|
68,495 |
70,507 |
69,599 |
69,663 |
69,982 |
|
68,724 |
70,297 |
69,763 |
69,627 |
69,806 |
|
69,005 |
70,063 |
69,914 |
69,625 |
69,590 |
|
69,319 |
69,822 |
70,041 |
69,658 |
69,344 |
|
69,646 |
69,595 |
70,134 |
69,723 |
69,086 |
|
69,964 |
69,398 |
70,186 |
69,812 |
68,834 |
|
70,254 |
69,244 |
70,196 |
69,915 |
68,605 |
|
70,498 |
69,143 |
70,167 |
70,019 |
68,417 |
|
70,680 |
69,100 |
70,104 |
70,110 |
68,287 |
|
70,791 |
69,115 |
70,017 |
70,174 |
68,225 |
|
70,825 |
69,183 |
69,917 |
70,201 |
|

Число гармоник m=33.
|
A33 |
B33 |
S |
|
-0,482 |
0,309 |
0,109 |
Модель:
y=69,6563+2,03125cos(t) +0,21441sin(t) -0,486cos(t) +0,320sin(t) -0,651cos(t) -0,061sin(t) -0,330cos(t) +0,446sin(t) -0,362cos(t) +0,532sin(t) +0,783cos(t) +1,047sin(t) -0,516cos(t) +0,060sin(t) -0,822sin(t) +1,766cos(t) -0,675cos(t) -0,696sin(t) -0,511cos(t) +1,629sin(t) +0,706cos(t) +0,009sin(t) -0,395cos(t) +0,563sin(t) -1,022cos(t) +0,350sin(t) -0,785cos(t) +0,018sin(t) -0,193cos(t) -0,917sin(t) +0,344cos(t) +0,125sin(t) -0,732cos(t) +0,339sin(t) -0,199sin(t) +0,159cos(t) +0,198cos(t) +0,176sin(t) -0,300cos(t) -0,272sin(t) -0,432sin(t) +0,044cos(t) -0,061cos(t) -0,530sin(t) -0,049sin(t) +0,187cos(t) -0,266cos(t) +0,115sin(t) -0,176cos(t) -0,113sin(t) -0,519cos(t) -0,295sin(t) -0,530sin(t) +0,380cos(t) -0,099cos(t) +0,486sin(t) -0,410cos(t) +0,322sin(t) -0,080cos(t) +0,169sin(t) -0,482cos(t) -0,309sin(t) +0,219cos(t) +0,000sin(t) -0,482cos(t) +0,309sin(t).
Теоритический ряд:
|
64,891 |
69,109 |
66,891 |
71,109 |
68,891 |
|
70,109 |
72,891 |
65,109 |
74,891 |
72,109 |
|
72,891 |
68,109 |
71,891 |
73,109 |
74,891 |
|
71,109 |
73,891 |
66,109 |
69,891 |
73,109 |
|
65,891 |
72,109 |
67,891 |
67,109 |
70,891 |
|
68,109 |
65,891 |
70,109 |
64,891 |
70,109 |
|
69,891 |
65,109 |
72,891 |
69,109 |
68,891 |
|
74,109 |
68,891 |
75,109 |
72,891 |
65,109 |
|
71,891 |
73,109 |
72,891 |
75,109 |
66,891 |
|
69,109 |
69,891 |
69,109 |
69,891 |
68,109 |
|
64,891 |
71,109 |
66,891 |
67,109 |
65,891 |
|
70,109 |
72,891 |
65,109 |
64,891 |
69,109 |
|
73,891 |
69,109 |
67,891 |
68,109 |
|

