- •1 Истинное и выборочное уравнение регрессии. Метод наименьших квадратов.
- •2 Классификация моделей систем массового обслуживания. Графическая модель смо.
- •3. Классификация эконометрических моделей
- •3.Классификация эконометрических моделей
- •4. Классификация эмм
- •7 Одноканальная и многоканальная система массового обслуживания (смо) с ожиданием и ограничением на длину очереди.
- •8 Одноканальная и многоканальная система массового обслуживания (смо) с отказами.
- •9) Одноканальная и многоканальная смо с ожиданием без ограничения на длину очереди.
- •10 Однопродуктовая модель оптимальной партии поставки без дефицита.
- •11 Определение и свойства коэффицентов прямых и полных затрат
- •12 Определение оптимальной величины партии в условиях скидки на размер заказа
- •13. Определение оптимальной стратегии в условиях неопределенности по критериям Байеса и Вальда.
- •14. Определение оптимальной стратегии в условиях неопределенности по критериям Байеса и Гурвица.
- •15 Определение оптимальной стратегии в условиях неопределенности по критериям Вальда и Сэвиджа.
- •16 Определение оптимальной стратегии в условиях неопределенности по критериям Сэвиджа и Гурвица.
- •17. Определение точки заказа и моментов подачи заказа.
- •18 Определение эконометрики и ее задачи.
- •19) Основные понятия и принципы построения сетевого графика.
- •20. Основные понятия теории управления запасами: запас, виды затрат в системе управления запасами, критерий оптимальности управления производством и запасами.
- •21. Основные этапы экономико-математического моделирования.
- •22 Оценка качества множественной линейной регрессии.
- •23 Полный и свободный резервы времени работ в задачах сетевого планирования
- •24 Понятие о системе массового обслуживания. Примеры смо в экономике
- •25 Понятие об игровых моделях. Основные понятия: конфликтная ситуация, игрок, стратегия.
- •26 Предмет экономико-математического моделирования
- •27 Проверка значимости коэффициента детерминации.
- •28 Проверка значимости коэффициентов регрессии
- •29 Проверка общего качества уравнения регрессии. Коэффициент детерминации. Проверка значимости коэффициента детерминации
- •30. Путь, полный путь, критический путь, определение критического пути четырехсекторным методом.
- •31. Расчет временных параметров событий в задачах сетевого планирования.
- •32. Регрессии. Нелинейные по переменным и их построение.
- •33. Резервы времени работ в задачах сетевого планирования
- •34. Сроки раннего и позднего начала и окончания работ в задачах сетевого планирования
- •35. Сроки совершения событий в задачах сетевого планирования
- •36. Схема межотраслевого баланса за отчетный период в стоимостном выражении
- •37. Типы данных и виды переменных в эконометрических задачах
- •38 Типы данных и виды переменных в эконометрических моделях
- •39 Точечный и интервальный прогноз на основе модели парной линейной регрессии
- •41. Эластичность функции.
33. Резервы времени работ в задачах сетевого планирования
Путь характеризуется двумя показателями — продолжительностью и резервом. Для событий рассчитывают три характеристики: ранний и поздний срок совершения события, а также его резерв. Ранний срок свершения события определяется величиной наиболее длительного отрезка пути от исходного до рассматриваемого события, причем tр(1)=0, a tр(N)=tKp(L): tр(j)=max{tр(j)+(i,j)}; j=2,…,N Поздний срок свершения события характеризует самый поздний допустимый срок, к которому должно совершиться событие, не вызывая при этом срыва срока свершения конечного события: tn(i)=min{tn(i)-t(i,j)}; j=2,…,N-1 Этот показатель определяется «обратным ходом», начиная с завершающего события, с учетом соотношения tn(N)=tp(N). Все события, за исключением событий, принадлежащих критическому пути, имеют резерв R(i): R(i)=tn(i)-tp(i) Резерв определяется как разность между длинами критического и рассматриваемого путей. Из этого определения следует, что работы, лежащие на критическом пути, и сам критический путь имеют нулевой резерв времени. Резерв времени пути показывает, на сколько может увеличиться продолжительность работ, составляющих данный путь, без изменения продолжительности общего срока выполнения всех работ.
Резерв показывает, на какой предельно допустимый срок можно задержать наступление этого события, не вызывая при этом увеличения срока выполнения всего комплекса работ. Для всех работ (i,j) на основе ранних и поздних сроков свершения всех событий можно определить показатели: Ранний срок начала— tpn(i,j)=p(i) ; Ранний срок окончания — tpo(i,j)=tp(i)+t(i,j); Поздний срок окончания — tno(U)=tn(j); Поздний срок начала —tпн(i,j)=tn(j)-t(i,j); Полный резерв времени —Rn(i,j)=tn(j)-tp(i)-t(i,j); Независимый резерв — Rн(i,j)=max{0; tp(j)–tn(i)-t(i,j)}=max{0;Rn(i,j)-R(i)-R(j)}. Полный резерв времени показывает, на сколько можно увеличить время выполнения конкретной работы при условии, что срок выполнения всего комплекса работ не изменится. Независимый резерв времени соответствует случаю, когда все предшествующие работы заканчиваются в поздние сроки, а все последующие — начинаются в ранние сроки. Использование этого резерва не влияет на величину резервов времени других работ.
34. Сроки раннего и позднего начала и окончания работ в задачах сетевого планирования
Работа – это некоторый процесс, приводящий к достижению определенного результата и требующий затрат каких-либо ресурсов, имеет протяженность во времени.
Начало и окончание любой работы описываются парой событий, которые называются начальным и конечным событиями
–
ранний
срок наступления события i, минимально
необходимый для выполнения всех работ,
которые предшествуют событию i
–
поздний
срок наступления события i, превышение
которого вызовет аналогичную задержку
наступления завершающего события сети;
–
резерв
события i, т.е. время, на которое может
быть отсрочено наступление события i без
нарушения сроков завершения проекта в
целом.
Временные параметры работ определяются на основе ранних и поздних сроков событий:
·
–
ранний срок начала работы;
·
–
ранний срок окончания работы;
·
–
поздний срок окончания работы;
·
–
поздний срок начала работы;
