- •1 Истинное и выборочное уравнение регрессии. Метод наименьших квадратов.
- •2 Классификация моделей систем массового обслуживания. Графическая модель смо.
- •3. Классификация эконометрических моделей
- •3.Классификация эконометрических моделей
- •4. Классификация эмм
- •7 Одноканальная и многоканальная система массового обслуживания (смо) с ожиданием и ограничением на длину очереди.
- •8 Одноканальная и многоканальная система массового обслуживания (смо) с отказами.
- •9) Одноканальная и многоканальная смо с ожиданием без ограничения на длину очереди.
- •10 Однопродуктовая модель оптимальной партии поставки без дефицита.
- •11 Определение и свойства коэффицентов прямых и полных затрат
- •12 Определение оптимальной величины партии в условиях скидки на размер заказа
- •13. Определение оптимальной стратегии в условиях неопределенности по критериям Байеса и Вальда.
- •14. Определение оптимальной стратегии в условиях неопределенности по критериям Байеса и Гурвица.
- •15 Определение оптимальной стратегии в условиях неопределенности по критериям Вальда и Сэвиджа.
- •16 Определение оптимальной стратегии в условиях неопределенности по критериям Сэвиджа и Гурвица.
- •17. Определение точки заказа и моментов подачи заказа.
- •18 Определение эконометрики и ее задачи.
- •19) Основные понятия и принципы построения сетевого графика.
- •20. Основные понятия теории управления запасами: запас, виды затрат в системе управления запасами, критерий оптимальности управления производством и запасами.
- •21. Основные этапы экономико-математического моделирования.
- •22 Оценка качества множественной линейной регрессии.
- •23 Полный и свободный резервы времени работ в задачах сетевого планирования
- •24 Понятие о системе массового обслуживания. Примеры смо в экономике
- •25 Понятие об игровых моделях. Основные понятия: конфликтная ситуация, игрок, стратегия.
- •26 Предмет экономико-математического моделирования
- •27 Проверка значимости коэффициента детерминации.
- •28 Проверка значимости коэффициентов регрессии
- •29 Проверка общего качества уравнения регрессии. Коэффициент детерминации. Проверка значимости коэффициента детерминации
- •30. Путь, полный путь, критический путь, определение критического пути четырехсекторным методом.
- •31. Расчет временных параметров событий в задачах сетевого планирования.
- •32. Регрессии. Нелинейные по переменным и их построение.
- •33. Резервы времени работ в задачах сетевого планирования
- •34. Сроки раннего и позднего начала и окончания работ в задачах сетевого планирования
- •35. Сроки совершения событий в задачах сетевого планирования
- •36. Схема межотраслевого баланса за отчетный период в стоимостном выражении
- •37. Типы данных и виды переменных в эконометрических задачах
- •38 Типы данных и виды переменных в эконометрических моделях
- •39 Точечный и интервальный прогноз на основе модели парной линейной регрессии
- •41. Эластичность функции.
32. Регрессии. Нелинейные по переменным и их построение.
Чтобы написать ту или иную зависимость прим. ур-ие регрессии – ур-ие, связыв. между собой фактор признаки и результативные признаки. Ур-ие регрессии бывают линейные и нелинейные. Сама регрессия бывает парная (зав-сть между 1-им фактор признаком и результатом) y = y(x) ; и множественная y = a + bx (парная линейная регрессия, т.к. х и у участвуют в 1-ой степени, а и b – параметры рег. имеющие эк. смысл).
При иссл. соц.-экон. явл. и процессов далеко не все зависимости можно описать с помощью лин. связи. Т.О. в ЭММ широко использ. класс нелин. моделей регрессии, кот. делятся на 2 класса:
1) модели регрессии, нелин. относительно включенных в анализ независ. переменных, но линейные по оцениваемым параметрам;
2) модели регрессии, нелинейные по оцениваемым параметрам.
Для оценки параметров нелинейных моделей используют два подхода.
1.основан на линеаризации модели (с помощью подходящих преобразований исходных переменных исследуемую зависимость представляют в виде линей. соотношения между преобразованными переменными).
2.применяют в случаях, когда подобрать соответствующее линеаризующее преобразование не удается. Тогда исп. методы нелин. оптимизации на основе исходных переменных. Оценка параметров регрессии, нелинейной по переменным, включенным в анализ, но линейной по оцениваемым параметрам, проводится с помощью МНК путем решения системы линейных алгебр.уравнений.
К моделям регрессии, нелинейным относительно включённых в анализ независимых переменных (но линейных по оцениваемым параметрам), относятся полиномы выше второго порядка и гиперболическая функция. Эти модели представляют собой что зависимая переменная yi линейно связана с параметрами модели.
Полиномы или полин. функции примен. при анализе процессов с монотонным развитием и отсутствием пределов роста. (нап.натур.показатели пром. про-ва). Полин. функции характер. отсутствием явной зависимости приростов факторных переменных от значений результативной переменной yi.
Общий вид полинома n-го порядка (n-ой степени):
Чаще всего в ЭММ примен. полином второго порядка (параболическая функция), характ. равноускоренное развитие процесса (равноускоренный рост или снижение уровней).:
Гиперболическая функция характеризует нелин. зависимость между результативной переменной yi и факторной переменной xi, однако, эта функция является лин.по оцениваемым параметрам.( модель зависимости затрат на единицу продукции от объёма производства)
Гиперболоид или гиперболическая функция имеет вид:
Данная гиперб. функция является равносторонней.
Неизвестные параметры модели регрессии, нелинейной по факторным переменным, можно найти только после того, как модели будет приведена к линейному виду.
Для того чтобы оценить неизвестные параметры нелин. регрессионной модели необходимо привести её к линейному виду. Суть процесс линеаризации нелин. по факторным переменным моделей регрессии заключается в замене нелин. факторных переменных на лин. переменные.
Рассмотрим процесс линеаризации полиномиальной функции порядка n:
Заменим все факторные переменные на линейные следующим образом:
x=c1; x2=c2; x3=c3; … xn=cn.
Тогда модель множественной регрессии можно записать в виде:
yi=
Рассмотрим процесс линеаризации гиперболической функции:
Данная функция может быть приведена к линейному виду путём замены нелин.факторной переменной 1/x на лин.переменную с. Тогда модель регрессии можно записать в виде:
yi=
Следовательно, модели регрессии, нелин. относительно включенных в анализ независимых переменных, но лин. по оцениваемым параметрам, могут быть преобразованы к лин. виду. Это позволяет применять к линеаризованным моделям регрессии классические методы определения неизвестных параметров модели (метод наименьших квадратов ), а также методы проверки различных гипотез.
