- •1 Истинное и выборочное уравнение регрессии. Метод наименьших квадратов.
- •2 Классификация моделей систем массового обслуживания. Графическая модель смо.
- •3. Классификация эконометрических моделей
- •3.Классификация эконометрических моделей
- •4. Классификация эмм
- •7 Одноканальная и многоканальная система массового обслуживания (смо) с ожиданием и ограничением на длину очереди.
- •8 Одноканальная и многоканальная система массового обслуживания (смо) с отказами.
- •9) Одноканальная и многоканальная смо с ожиданием без ограничения на длину очереди.
- •10 Однопродуктовая модель оптимальной партии поставки без дефицита.
- •11 Определение и свойства коэффицентов прямых и полных затрат
- •12 Определение оптимальной величины партии в условиях скидки на размер заказа
- •13. Определение оптимальной стратегии в условиях неопределенности по критериям Байеса и Вальда.
- •14. Определение оптимальной стратегии в условиях неопределенности по критериям Байеса и Гурвица.
- •15 Определение оптимальной стратегии в условиях неопределенности по критериям Вальда и Сэвиджа.
- •16 Определение оптимальной стратегии в условиях неопределенности по критериям Сэвиджа и Гурвица.
- •17. Определение точки заказа и моментов подачи заказа.
- •18 Определение эконометрики и ее задачи.
- •19) Основные понятия и принципы построения сетевого графика.
- •20. Основные понятия теории управления запасами: запас, виды затрат в системе управления запасами, критерий оптимальности управления производством и запасами.
- •21. Основные этапы экономико-математического моделирования.
- •22 Оценка качества множественной линейной регрессии.
- •23 Полный и свободный резервы времени работ в задачах сетевого планирования
- •24 Понятие о системе массового обслуживания. Примеры смо в экономике
- •25 Понятие об игровых моделях. Основные понятия: конфликтная ситуация, игрок, стратегия.
- •26 Предмет экономико-математического моделирования
- •27 Проверка значимости коэффициента детерминации.
- •28 Проверка значимости коэффициентов регрессии
- •29 Проверка общего качества уравнения регрессии. Коэффициент детерминации. Проверка значимости коэффициента детерминации
- •30. Путь, полный путь, критический путь, определение критического пути четырехсекторным методом.
- •31. Расчет временных параметров событий в задачах сетевого планирования.
- •32. Регрессии. Нелинейные по переменным и их построение.
- •33. Резервы времени работ в задачах сетевого планирования
- •34. Сроки раннего и позднего начала и окончания работ в задачах сетевого планирования
- •35. Сроки совершения событий в задачах сетевого планирования
- •36. Схема межотраслевого баланса за отчетный период в стоимостном выражении
- •37. Типы данных и виды переменных в эконометрических задачах
- •38 Типы данных и виды переменных в эконометрических моделях
- •39 Точечный и интервальный прогноз на основе модели парной линейной регрессии
- •41. Эластичность функции.
28 Проверка значимости коэффициентов регрессии
Проверка статистической значимости параметров регрессионного уравнения (коэффициентов регрессии) выполняется по t-критерию Стьюдента, который рассчитывается по формуле:
где P - значение параметра; Sp - стандартное отклонение параметра.
Рассчитанное значение критерия Стьюдента сравнивают с его табличным значением при выбранной доверительной вероятности (как правило, 0.95) и числе степеней свободы N-k-1, где N-число точек, k-число переменных в регрессионном уравнении (например, для линейной моделиY=A*X+B подставляем k=1).
Если вычисленное значение tp выше, чем табличное, то коэффициент регрессии является значимым с данной доверительной вероятностью. В противном случае есть основания для исключения соответствующей переменной из регрессионной модели.
Величины параметров и их стандартные отклонения обычно рассчитываются в алгоритмах, реализующих метод наименьших квадратов.
29 Проверка общего качества уравнения регрессии. Коэффициент детерминации. Проверка значимости коэффициента детерминации
После проверки значимости каждого коэффициента регрессии обычно проверяется общее качество уравнения регрессии. Для этой цели, как и в случае парной регрессии, используется коэффициент детерминации R2, который рассчитывается по формуле:
В общем случае 0 < R2 < 1. Чем ближе этот коэффициент к единице, тем больше уравнение регрессии объясняет поведение Y. Поэтому естественно желание построить регрессию с наибольшим R2.
Для множественной регрессии коэффициент детерминации является неубывающей функцией числа объясняющих переменных. Добавление новой объясняющей переменной никогда не уменьшает значение R . Действительно, каждая следующая объясняющая переменная может лишь дополнить, но никак не сократить информацию, объясняющую поведение зависимой переменной. Это уменьшает (в худшем случае не увеличивает) область неопределенности в поведении Y.
Коэффициент
детерминации (
)—
это квадрат множественного
коэффициента корреляции.
Он показывает, какая доля дисперсии результативного
признака объясняется влиянием независимых
переменных.
Формула для вычисления коэффициента детерминации:
где
—
выборочные данные, а
—
соответствующие им значения модели.
Также это квадрат корреляции Пирсона между двумя переменными. Он выражает количество дисперсии, общей между двумя переменными.
Коэффициент
принимает значения из интервала
.
Чем ближе значение к 1 тем ближе модель
к эмпирическим наблюдениям.
В случае парной
линейной регрессионной модели коэффициент
детерминации равен квадрату коэффициента
корреляции, то есть
.
После оценки индивидуальной статистической значимости каждого из коэффициентов регрессии обычно анализируется совокупная значимость коэффициентов. Такой анализ осуществляется на основе проверки гипотезы об общей значимости — гипотезы об одновременном равенстве нулю всех коэффициентов регрессии при объясняющих переменных:
0: β0= β1= β2 = ... = βm=0
Если данная гипотеза не отклоняется, то делается вывод о том, что совокупное влияние всех m объясняющих переменных X1, Х2, ..., Хm модели на зависимую переменную Y можно считать статистически несущественным, а общее качество уравнения регрессии невысоким.
Проверка данной гипотезы осуществляется на основе дисперсионного анализа сравнения объясненной и остаточной дисперсий.
H0: (объясненная дисперсия) = (остаточная дисперсия),
H1: (объясненная дисперсия) > (остаточная дисперсия).
Строится F-статистика:
где
—
объясненная дисперсия;
—
остаточная дисперсия. При выполнении
предпосылок МНК построенная F-статистика
имеет распределение Фишера с числами
степеней свободы ν1=m,
ν2=
n-m-1. Поэтому, если при требуемом уровне
значимости α Fнабл >
Fα,m,n-m-1=
Fкр (критическая
точка распределения Фишера), то
H0отклоняется
в пользу H1.
Это означает, что объясненная дисперсия
существенно больше остаточной дисперсии,
а следовательно, уравнение регрессии
достаточно качественно отражает динамику
изменения зависимой переменной Y.
Однако на практике чаще вместо указанной гипотезы проверяют тесно связанную с ней гипотезу о статистической значимости коэффициента детерминации R2:
Для проверки данной гипотезы используется следующая F-статистика:
Величина F при выполнении предпосылок МНК и при справедливости. Но имеет распределение Фишера, аналогичное распределению F-статистики.
Анализ статистики F позволяет сделать вывод о том, что для принятия гипотезы об одновременном равенстве нулю всех коэффициентов линейной регрессии коэффициент детерминации R2 не должен существенно отличаться от нуля. Его критическое значение уменьшается при росте числа наблюдений и может стать сколь угодно малым.
