- •1 Истинное и выборочное уравнение регрессии. Метод наименьших квадратов.
- •2 Классификация моделей систем массового обслуживания. Графическая модель смо.
- •3. Классификация эконометрических моделей
- •3.Классификация эконометрических моделей
- •4. Классификация эмм
- •7 Одноканальная и многоканальная система массового обслуживания (смо) с ожиданием и ограничением на длину очереди.
- •8 Одноканальная и многоканальная система массового обслуживания (смо) с отказами.
- •9) Одноканальная и многоканальная смо с ожиданием без ограничения на длину очереди.
- •10 Однопродуктовая модель оптимальной партии поставки без дефицита.
- •11 Определение и свойства коэффицентов прямых и полных затрат
- •12 Определение оптимальной величины партии в условиях скидки на размер заказа
- •13. Определение оптимальной стратегии в условиях неопределенности по критериям Байеса и Вальда.
- •14. Определение оптимальной стратегии в условиях неопределенности по критериям Байеса и Гурвица.
- •15 Определение оптимальной стратегии в условиях неопределенности по критериям Вальда и Сэвиджа.
- •16 Определение оптимальной стратегии в условиях неопределенности по критериям Сэвиджа и Гурвица.
- •17. Определение точки заказа и моментов подачи заказа.
- •18 Определение эконометрики и ее задачи.
- •19) Основные понятия и принципы построения сетевого графика.
- •20. Основные понятия теории управления запасами: запас, виды затрат в системе управления запасами, критерий оптимальности управления производством и запасами.
- •21. Основные этапы экономико-математического моделирования.
- •22 Оценка качества множественной линейной регрессии.
- •23 Полный и свободный резервы времени работ в задачах сетевого планирования
- •24 Понятие о системе массового обслуживания. Примеры смо в экономике
- •25 Понятие об игровых моделях. Основные понятия: конфликтная ситуация, игрок, стратегия.
- •26 Предмет экономико-математического моделирования
- •27 Проверка значимости коэффициента детерминации.
- •28 Проверка значимости коэффициентов регрессии
- •29 Проверка общего качества уравнения регрессии. Коэффициент детерминации. Проверка значимости коэффициента детерминации
- •30. Путь, полный путь, критический путь, определение критического пути четырехсекторным методом.
- •31. Расчет временных параметров событий в задачах сетевого планирования.
- •32. Регрессии. Нелинейные по переменным и их построение.
- •33. Резервы времени работ в задачах сетевого планирования
- •34. Сроки раннего и позднего начала и окончания работ в задачах сетевого планирования
- •35. Сроки совершения событий в задачах сетевого планирования
- •36. Схема межотраслевого баланса за отчетный период в стоимостном выражении
- •37. Типы данных и виды переменных в эконометрических задачах
- •38 Типы данных и виды переменных в эконометрических моделях
- •39 Точечный и интервальный прогноз на основе модели парной линейной регрессии
- •41. Эластичность функции.
25 Понятие об игровых моделях. Основные понятия: конфликтная ситуация, игрок, стратегия.
Методы, основанные на теории игр, используются для принятия решений в условиях неопределенности. Игра — это математическая модель конфликтной ситуации, которая предполагает наличие следующих компонентов:
а) заинтересованных сторон;
б) возможных действий каждой из сторон;
в) интересов сторон.
В игре заинтересованные стороны называются игроками, каждый из которых может предпринимать не менее двух действий (если игрок имеет в своем распоряжении только одно действие, то он фактически не участвует в игре, поскольку заранее известно, что он предпримет).
В экономике возникают ситуации, в которых интересы участвующих сторон противоположны. Такие ситуации называют конфликтными.
Стратегия-набор правил, формируемых до игры, которые определяют в каждой из возможных ситуаций действия игроков.
26 Предмет экономико-математического моделирования
Моделирование - процесс познания с использованием моделей, т.е. таких объектов, которые заменяют оригинал и служат источником информации о нем. Одним из видов моделирования является математическое моделирование.
Математическое моделирование экономических явлений и процессов является важным инструментом экономического анализа. Оно дает возможность получить четкое представление об исследуемом объекте, охарактеризовать и количественно описать его внутреннюю структуру и внешние связи.
Модель - условный образ объекта управления (исследования). Модель конструируется субъектом управления (исследования) так, чтобы отобразить характеристики объекта - свойства, взаимосвязи, структурные и функциональные параметры и т. п., существенные для цели управления (исследования). Содержание метода моделирования составляют конструирование модели на основе предварительного изучения объекта и выделения его существенных характеристик, экспериментальный или теоретический анализ модели, сопоставление результатов с данными об объекте, корректировка модели.
В экономическом анализе используются главным образом математические модели, описывающие изучаемое явление или процесс с помощью уравнений, неравенств, функций и других математических средств. Различают математические модели с количественными характеристиками, записанными в виде формул; числовые модели с конкретными числовыми характеристиками; логические, записанные с помощью логических выражений, и графические, выраженные в графических образах. Модели, реализованные с помощью электронно-вычислительных машин, называют машинными, или электронными.
27 Проверка значимости коэффициента детерминации.
При выполнении процедуры проверки значимости коэффициента детерминации выдвигается нулевая гипотеза Нo против альтернативной H1 которые заключаются в следующем:
Нo: существенного различия между выборочным коэффициентом детерминации и коэффициентом детерминации генеральной совокупности B(r) = 0 нет.
Эта гипотеза равносильна гипотезе Нo : β1 = β2 = … = βm = 0, т. е. ни одна из объясняющих переменных, включенных в регрессию, не оказывает существенного влияния на зависимую переменную.
Н1: выборочный коэффициент детерминации существенно больше коэффициента детерминации генеральной совокупности В(г) = 0.
Из постановки задачи ясно, что следует использовать одностороннюю критическую область. Принятие гипотезы Н1 означает, что по крайней мере одна из m объясняющих переменных, включенных в регрессию, оказывает существенное влияние на переменную у.
Для оценки значимости парного коэффициента детерминации используется статистика
Имеющая F-распределение Фишера с f1 = m = 1 и f2 = n – 2 степенями свободы. Значение статистики, вычисленное вышеприведенной формуле, сравнивается с критическим значением этой статистики при заданном уровне значимости £ и соответствующем числе степеней свободы. Если F > Ff1; f2;£, то вычисленный коэффициент детерминации значимо отличается от нуля. Этот вывод обеспечивается с вероятностью 1 — £.
