Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
shpory_emmm_obschie.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
735 Кб
Скачать

22 Оценка качества множественной линейной регрессии.

Для обеспечения качества модели необходимо, чтобы было n > 3k, где n – количество наблюдений, k – количество факторов. Модель множественной регрессии оценивается с помощью следующих критериев:

1. Коэффициент детерминации (R2):

Всегда 0 < R2 < 1. Чем ближе R2 к 1, тем точнее модель. Если R2 > 0,8, то модель считается точной, если R2 < 0,5, то модель надо улучшить, либо выбрав другие факторы, либо увеличив количество наблюдений.

2. Коэффициент множественной корреляции:

3. Скорректированный коэффициент детерминации:

4. Стандартная ошибка:

5. Оценка значимости модели, т.е. оценка того насколько верна гипотеза о линейности регрессии между Y и факторами Xi осуществляется по F-критерию Фишера. По наблюдаемым значениям определяется значение

Если Fнабл > Fкр = Fтабл(0,95; n – 1; n – k – 1), где 0,95 – уровень доверительной вероятности, (n – 1) и (n – k – 1) степени свободы модели, то модель считается значимой, и принимается гипотеза о линейной регрессии между переменными Y и Xi, где Fтабл – табличное значение F-критерия Фишера.

Иначе гипотеза о линейной регрессии отвергается и надо изменять модель: выбрать другие факторы, увеличить количество наблюдений или построить нелинейную регрессию.

23 Полный и свободный резервы времени работ в задачах сетевого планирования

В задачах сетевого планирования для работ существуют: полный резерв времени и свободный резерв времени.

Полный резерв времени работы ( - максимальный запас времени, на который можно задержать начало работы или увеличить ее продолжительность, не нарушая критический срок:

Свободный резерв времени работы ( - максимальный запас времени, на который может быть отсрочена либо удлинена работа без изменения срока исполнения следующей работы:

Критические работы, как и критические события, резерв времени не имеет

24 Понятие о системе массового обслуживания. Примеры смо в экономике

 Системы массового обслуживания (СМО) представляют собой системы специального вида, реализующие многократное выполнение однотипных задач.Подобные системы играют важную роль во многих областях экономики, финансов, производства и быта. В качестве примеров СМО в финансово-экономической ; сфере можно привести банки различных типов (коммерческие,  инвестиционные,  ипотечные, инновационные,  сберегательные), страховые организации, государственные акционерные общества, компании, фирмы, ассоциации, кооперативы, налоговые инспекции, аудиторские службы, различные системы связи (в том числе телефонные станции), погрузочно-разгрузочные комплексы (порты, товарные станции), автозаправочные станции, различные предприятия и организации сферы обслуживания (магазины, справочные бюро, парикмахерские, билетные кассы, пункты по обмену валюты, ремонтные мастерские, больницы). Такие системы, как компьютерные сети, системы сбора, хранения и обработки  информации, транспортные системы, автоматизированные производственные участки, поточные линии, различные военные системы, в частности системы противовоздушной или противоракетной обороны, также могут ? рассматриваться как своеобразные СМО

Каждая СМО включает в свою структуру некоторое ; число обслуживающих устройств, которые называют каналами (приборами, линиями) обслуживания. Роль каналов могут играть различные приборы, лица, выполняющие те или иные операции (кассиры, операторы, парикмахеры, продавцы), линии связи, автомашины, краны, ремонтные бригады, железнодорожные пути, бензоколонки и т.д.

Системы массового обслуживания могут быть одноканальными или многоканальными.

Каждая СМО предназначена для обслуживания (выполнения) некоторого потока заявок (требований), поступающих на вход системы большей частью не регулярно, а случайные моменты времени. Обслуживание заявок, в этом случае, также длится не постоянное, заранее известное время, а случайное время, которое зависит от многиx случайных, порой неизвестных нам, причин. После обслуживания заявки канал освобождается и готов к приему следующей заявки. Случайный характер потоказаявок и времени их обслуживания приводит к неравномерной загруженности СМО: в иное время на входе СМО могут скапливаться необслуженные заявки, что приводит к перегрузке СМО, а иногда при свободных каналах на входе СМО заявки не будет, что приводит к недогрузке СМО, т.е. к простаиванию ее каналов. Заявки, скапливающиеся на входе СМО, либо «становятся» в очередь, либо по причине невозможности дальнейшего пребывания в очереди покидают СМО необслуженными. 

Таким образом, во всякой СМО можно выделить следующие основные элементы:

1) входящий поток заявок;

2) очередь;

3) каналы обслуживания;

4) выходящий поток обслуженных заявок.

Каждая СМО в зависимости от своих параметров — характера потока заявок, числа каналов обслуживания и их производительности, а также от правил организации работы обладает определенной эффективностью функционирования (пропускной способностью), позволяющей ей более или менее успешно справляться с потоком заявок.

Предметом изучения теории массового обслуживания •является СМО.

Цель теории массового обслуживания — выработка  рекомендаций по рациональному построению СМО, рациональной организации их работы и регулированию потока заявок для обеспечения высокой эффективности функционирования СМО.

Для достижения этой цели решаются задачи теории массового обслуживания, состоящие в установлении зависимостей эффективности функционирования СМО I от ее организации (параметров): характера потока заявок, числа каналов и их производительности и правил работы СМО.

В качестве характеристик эффективности функционирования СМО можно, выбрать три основные группы (обычно средних) показателей:

1. Показатели эффективности использования СМО

• Абсолютная пропускная способность СМО — среднее число заявок, которое может обслужить СМО в единицу времени.

• Относительная пропускная способность СМО — отношение среднего числа заявок, обслуживаемых СМО в единицу времени, к среднему числу поступивших заявок за это же время.

• Средняя продолжительность периода занятости СМО.

• Коэффициент использования СМО — средняя доля времени, в течение которого СМО занята обслуживанием заявок, и т.п.

2. Показатели качества обслуживания заявок

• Среднее время ожидания заявки в очереди.

• Среднее время пребывания заявки в СМО.

• Вероятность отказа заявке в обслуживании без ожидания.

• Вероятность того, что поступившая заявка немедленно будет принята к обслуживанию.

• Закон распределения времени ожидания заявки в очереди.

• Закон распределения времени пребывания заявки в СМО.

• Среднее число заявок, находящихся в очереди.

• Среднее число заявок, находящихся в СМО, и т.п.

3. Показатели эффективности функционирования пары «СМО — потребитель», где под потребителем понимают всю совокупность заявок или некий их источник (например, средний доход, приносимый СМО в единицу времени, и т.п.)

Отметим, что третья группа показателей оказывается полезной в тех случаях, когда некоторый доход, получаемый от обслуживания заявок, и затраты на обслуживание измеряются в одних и тех же единицах. Эти показатели обычно носят вполне конкретный характер и определяются спецификой СМО, обслуживаемых заявок и дисциплиной обслуживания.

Случайный характер потока заявок и длительности их обслуживания порождает в СМО случайный процесс.

Случайным процессом (или случайной функцией) называется соответствие, при котором каждому значению аргумента (в данном случае — моменту из промежутка времени проводимого опыта) ставится в соответствие случайная величина (в данном случае — состояние СМО).

Случайной величиной называется величина, которая в результате опыта может принять одно, но неизвестное заранее, какое именно, числовое значение из данного числового множества.

Для решения задач теории массового обслуживания необходимо этот случайный процесс изучить, т. е. построить и проанализировать его математическую модель.

Математическое изучение функционирования СМО значительно упрощается, если протекающий в ней случайный процесс является марковским. Случайный процесс, протекающий в СМО, называется марковским (или процессом без последействия, или процессом без памяти), если вероятность любого состояния СМО в будущем зависит только от ее состояния в настоящем и не зависит от.ее состояний в прошлом. В этом случае работа СМО сравнительно легко описывается с помощью аппарата конечных систем обыкновенных линейных дифференциальных уравнений первого порядка, а в предельном  режиме (при достаточно длительном функционировании СМО) — с помощью аппарата конечных систем линейных алгебраических уравнений, и в результате удается выразить в явном виде основные характеристики эффективности функционирования СМО через параметры СМО, потока заявок и дисциплины работы СМО.

Чтобы случайный процесс был марковским, необходимо и достаточно, чтобы все потоки событий, под воздействием которых происходят переходы системы из состояния в состояние, были пуассоновскими, т.е. обладающими свойствами отсутствия последействия (для любых двух непересекающихся промежутков времени число событий, наступающих за один из них, не зависит от числа событий, наступающих за другой) и ординарностью (вероятность наступления за элементарный — малый промежуток времени более одного событий пренебрежимо мала по сравнению с вероятностью наступления за этот промежуток времени одного события). В СМО потоками событий являются потоки заявок, потоки «обслуживания» заявок и т.д.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]