Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
shpory_emmm_obschie.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
735 Кб
Скачать

16 Определение оптимальной стратегии в условиях неопределенности по критериям Сэвиджа и Гурвица.

Оценка альтернатив производится не по исходной матрице, а по так называемой "матрице сожалений" или, как ее еще называют в некоторых источниках, "матрице рисков".

Для произвольной альтернативы и конкретного состояния природы величина "сожаления" равна разнице между тем, что обеспечивает данная альтернатива, и тем, сколько максимально можно выиграть при данном состоянии. С экономической точки зрения величину "сожаления" можно трактовать как недополученный выигрыш (или упущенную выгоду) по сравнению с максимально возможным при данном состоянии природы.

Порядок применения критерия Сэвиджа

1. Для каждого состояния природы j (столбца матрицы) определим максимальное значение выигрыша yj:

yj = max(xij)

2. Для каждой клетки исходной матрицы X найдем разность между максимальным выигрышем rj для данного состояния природы и исходом в рассматриваемой ячейке xij:

rij = yj - xij

Из полученных значений составим новую матрицу R - "матрицу сожалений" или, как ее еще можно назвать, матрицу недополученных выигрышей.

3. Для каждой альтернативы в новой матрице R найдем наибольший возможный недополученный выигрыш ("максимальное сожаление"). Это и будет являться оценкой данной альтернативы по критерию Сэвиджа Si:

Si = max(rij), j=1..M

4. Оптимальной может быть признана альтернатива с минимальным (!) наибольшим недополученным выигрышем:

Х* = Хk, Sk = min(Si), i=1..N

Обычный (или простой) критерий Гурвица учитывает только крайние исходыxmax и xmin каждой альтернативы:

xmax = max(xij), xmin = min(xij), j = 1..M

Он позволяет учесть субъективное отношение применяющего данный критерий ЛПР за счет придания этим исходам разных "весов". Для этого в расчет критерия введен "коэффициент оптимизма" λ, 0 ≤ λ ≤ 1. Формула для расчета критерия Гурвица для i-й альтернативы с коэффициентом оптимизма λ выглядит следующим образом:

Hi (λ) = λ xmax + (1 - λ) xmin

Если исходы представляют возможные выигрыши, то оптимальной признается альтернатива с максимальным значением критерия Гурвица:

Х* = Хk , Hk (λ) = max(Hi (λ)), i = 1..N

Как видно из формулы, правильный выбор коэффициента оптимизма λ оказывает существенное влияние на результат применения критерия. Остановимся подробнее на логике подбора λ.

Если ЛПР настроен пессимистически, то для него важнее меньше потерять при плохом развитии событий, пусть даже это означает не такой большой выигрыш при удачном состоянии. Значит, удельный вес наихудшего исхода xi min в оценке альтернативы должен быть выше, чем для xi mах. Это обеспечивается, когда λ находится в пределах от 0 до 0.5, исключая последнее значение.

При λ = 0 критерий Гурвица "вырождается" в критерий Вальда и подходит только для очень пессимистично настроенных ЛПР.

Оптимистичный ЛПР, напротив, ориентируется на лучшие исходы, так как для него важнее больше выиграть, а не меньше проиграть. Больший удельный вес в оценке наилучшего исхода достигается при λ больше 0.5 и до 1 включительно. При λ = 1 критерий Гурвица становится критерием "максимакса", который учитывает исключительно наибольший исход каждой альтернативы.

Если у ЛПР нет ярко выраженного уклона ни в сторону пессимизма, ни оптимизма, коэффициент λ принимается равным 0.5.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]