Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Общая и частная.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
1.7 Mб
Скачать

Общая физиология

Вопрос1 Структура биологических мембран.

Фосфолипиды образуют двойной прерывистый слой. В этот слой включены белки, полярные группы которых сохраняют контакт с вод­ной фазой. Некоторые белки пронизывают мембрану насквозь, другие по­гружены в липидный бислой наполовину. Часть белков связана друг с другом; другие в большей или меньшей степени окружены липидами. Одни из них являются ионными каналами, другие со­держат боковые цепи гликозаминогликанов.

Гликокаликс. Поверхность мембраны покрыта гликокаликсом — трехмерной сетью нитей гликозаминогликанов, соединенных между собой при помощи кальциевых мостиков. Гликокаликс обеспечивает механичес­кую прочность мембраны, участвует в межклеточных взаимодействиях, рецепции, иммунологическом дифференцировании, разделяет молекулы веществ, контактирующих с клеткой, по величине и заряду.

Липиды. Молекулы липидов, образующих бислой, амфотерны. Сво­ими гидрофильными головками они обращены в сторону водных фаз (меж­клеточная жидкость и цитоплазма) и формируют внешнюю и внутреннюю поверхности мембраны. Важнейшей особенностью мембранных липидов является способность к перекисному окислению (ПОЛ) с образованием свободных радикалов.

Белки. Функциональное отличие мембраны одной клетки от мем­браны другой определяется наличием в ней специфических мембранных белков.

Белки, погруженные в фосфолипидный слой и пронизывающие его на­сквозь, называются внутренними мембранными белками, или белковыми ка­налами.

Другие белки — периферические — прикреплены к поверхности клетки.

С учетом выполняемых функций мембранные белки всех клеток делят на 5 классов: белки-насосы, белки-каналы, белки-рецепторы, ферменты и структурные белки.

Функции мембран:

  1. Барьерная – т.е. внутренняя среда клетки отделена от окружающей внешней среды.

  2. Механическая – т.е. клетки и внутриклеточные органоиды обладают морфологической целостностью и относительной автономией.

  3. Матричная – т.е. определенное взаимное расположение и ориентация белков.

  4. Транспортная – т.е. через мембрану проходят как пассивное перемещение веществ по градиенту концентрации, так и активное перемещение веществ против градиента концентрации.

  5. Биоэлектрогенетическая – т.е. мембрана всех клеток генерирует потенциал покоя, а на мембране всех возбудимых клеток возникает и распространяется потенциалдействия.

  6. Рецепторная – т.е. восприятие действий многочисленных химических молекул с помощью специфических мембранных молекул-рецепторов.

Виды транспорта через мембрану:

  1. Активный транспорт – транспорт веществ из среды с низкой концентрацией в среду с высокой концентрацией:

Активный транспорт — перенос вещества через клеточную или внутриклеточную мембрану (трансмембранный А.т.) или через слой клеток (трансцеллюлярный А.т.), протекающий против градиента концентрации из области низкой концентрации в область высокой, т. е. с затратой свободной энергии организма. В большинстве случаев, но не всегда, источником энергии служит энергия макроэргических связей АТФ.

Различные транспортные АТФазы, локализованные в клеточных мембранах и участвующие в механизмах переноса веществ, являются основным элементом молекулярных устройств — насосов, обеспечивающих избирательное поглощение и откачивание определенных веществ (например, электролитов) клеткой. Активный специфический транспорт неэлектролитов (молекулярный транспорт) реализуется с помощью нескольких типов молекулярных машин — насосов и переносчиков. Транспорт неэлектролитов (моносахаридов, аминокислот и других мономеров) может сопрягаться с симпортом — транспортом другого вещества, движение которого по градиенту концентрации является источником энергии для первого процесса. Симпорт может обеспечиваться ионными градиентами (например, натрия) без непосредственного участия АТФ.

  • Са2+-насос

  • К+-Na+ - насос

  • Протонная помпа

  1. Пассивный транспорт – транспорт веществ из среды с высокой концентрацией в среду с низкой концентрацией:

  • Осмос= пассивное перемещение некоторых веществ через полупроницаемую мембрану (обычно мелкие молекулы проходят, крупные не проходят)

  • Облегченная диффузия= Большинство веществ переносится через мембрану с помощью погружённых в неё транспортных белков (белков-переносчиков)

  • Простая диффузия=По пути простой диффузии частицы вещества перемещаются сквозь билипидный слой. Направление простой диффузии определяется только разностью концентраций вещества по обеим сторонам мембраны

  • Фильтрация

Все ионные каналы подразделяются на следующие группы:

1. По избирательности:

• Селективные, т.е. специфические. Эти каналы проницаемы для строго определенных ионов.

• Малоселективные, неспецифические, не имеющие определенной ионной избирательности. Их в мембране большое количество.

2. По характеру пропускаемых ионов:

• Калиевые.

• Натриевые.

• Кальциевые.

• Хлорные.

3. По скорости инактивации, т.е. закрывания:

• Быстроинактивирующиеся, т.е. быстро переходящие в закрытое состояние. Они обеспечивают быстро нарастающее снижение мембранного потенциала и такое же быстрое восстановление.

• Медленноинактивирующиеся. Их открытие вызывает медленное снижение мембранного потенциала и медленное его восстановление.

4. По механизмам открытия:

• Потенциалзависимые, т.е. те, которые открываются при определенном уровне потенциала мембраны.

• Хемозависимые, открывающиеся при воздействии на хеморецепторы мембраны клетки физиологически активных веществ (нейромедиаторов, гормонов и т.д.).

В настоящее время установлено, что ионные каналы имеют следующее строение:

1. Селективный фильтр, расположенный в устье канала. Он обеспечивает прохождение через канал строго определенных ионов.

2. Активационные ворота, которые открываются при определенном уровне мембранного потенциала или действия соответствующего ФАВ. Активационные ворота потенциалзависимых каналов имеют сенсор, который открывает их при определенном уровне мембранного потенциала.

3. Инактивационные ворота, обеспечивающие закрывание канала и прекращение проведения ионов по каналу на определенном уровне мембранного потенциала.

Неспецифические ионные каналы не имеют ворот.

Селективные ионные каналы могут находиться в трех состояниях, которые определяются положением активационных (m) и инактивационных (n) ворот:

1. Закрытом, когда активационные закрыты, а инактивационные открыты.

2. Активизированном, и те и другие ворота открыты.

3. Инактивизированном, активационные ворота открыты, а инактивационные закрыты.