Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
200
Добавлен:
20.06.2014
Размер:
1.27 Mб
Скачать

5. Весовая функция.

Весовая функция апериодического звена I-ого порядка имеет вид:

w(t) = L-1[W(s)] = L-1[K/(T·s + 1)] = (K/T)·e-t/T

Рис. 3.7. Весовая функция апериодического звена I-го порядка.

Для весовой функции апериодического звена I-ого порядка характерен скачок в начальный момент времени t = 0. Это происходит из-за того, что на вход звена подается δ-функция. Поскольку δ-функция – это математическая абстракция, которую на практике можно смоделировать в виде короткого импульса, то в реальном, физически реализуемом процессе будет наблюдаться переходный процесс, обозначенный на рисунке пунктиром.

6. Частотные характеристики.

Найдем АФЧХ, АЧХ, ФЧХ и ЛАЧХ апериодического звена I-ого порядка:

W(jω) = K/(T·jω + 1) = K·(T·jω – 1­)/[(T·jω + 1)·(T·jω – 1)] =

= K·(T·jω – 1­)/(-T2ω2 – 1) = K/(T2ω2 + 1) – [KTω/(T2ω2 + 1)]·j

Рис. 3.8. АФЧХ, АЧХ, ФЧХ, ЛАХ и ЛФХ апериодического звена I-ого порядка.

ЛАХапериодического звена I-ого порядка представляет собой трансцендентную функцию. Чтобы упростить использование ЛАХ, вводят понятие асимптотических ЛАХ, то есть кусочно-линейных функций, не сильно отличающихся от истинных.

Переход к асимптотической ЛАХ: заменяем истинную ЛАХ – ломаной асимптотической. Выделим области низких и высоких частот и по отдельности рассмотрим поведение ЛАХ в этих областях. После чего, оценим максимальную ошибку, возникающую на границе областей.

Область низких частот: T22 <<1; т.е. <<1/T; можно пренебречь выражением T22. Получаем: L() = 20lgK. Это горизонтальная прямая.

Область высоких частот: T22 >>1; т.е. >>1/T; можно пренебречь 1 в сравнении с выражением T22. Получаем L() = 20lgK – 20lgT. Это – уравнение прямой с наклоном -20дБ/декаду. (В логарифмических координатах декада – это интервал, соответствующий изменению частоты в 10раз).

Точке пересечения этих прямых соответствует частота ω1 = 1/T, которая называется частотой сопряжения. Вычислим максимальную ошибку ЛАХ в этой точке:

Lmax = (20lgK) – [20lgK + 10lg(T212+1)] = -10lg2  -3 дб.

Следует заметить, что ошибка асимптотической ЛАХ апериодического звена I-ого порядка не зависит от параметров звена (K и T) и равна приблизительно –3 дб.