- •Введение
- •1. Принципы нормирования воздействия на окружающую среду.
- •2.Классификация основных процессов, применяемых для защиты окружающей среды.
- •3.Гидромеханические процессы
- •3.1. Гравитационное разделение
- •3.2. Разделение неоднородных систем в поле центробежных сил
- •3.3. Разделение на пористых слоях (фильтрация)
- •3.4. Осаждение под действием электрических сил
- •3.6. Осаждение взвешенных частиц при контакте газов с жидкостью («мокрая» газоочистка)
- •4.Массообменные процессы
- •4.1.Общие сведения о массообменных процессах
- •4.2. Равновесие при массопередаче
- •4.2.1.Фазовое равновесие.
- •4.2.2.Материальный баланс массообмена. Рабочая линия.
- •4.2.3.Направление массопередачи.
- •4.3. Скорость массопередачи
- •4.3.1. Перенос вещества внутри фазы
- •4.3.2. Механизм процессов массопереноса.
- •4.3.3.Уравнение массопередачи.
- •4.3.4.Зависимость между коэффициентами массопередачи и массоотдачи.
- •4.3.5. Движущая сила процессов массопередачи
- •4.4. Абсорбция
- •4.5.Адсорбция
- •4.5.1. Механизм процесса адсорбции
- •4.5.2. Скорость процесса адсорбции
- •4.5.3. Динамика адсорбции. Уравнение Шилова.
- •5. Химические процессы
- •5.1.Стехиометрия химических превращений
- •5.2.Термодинамика химических превращений
- •5.3.Химическое равновесие
- •5.4.Скорость химических реакций
- •5.5.Механизм химических реакций
- •6. Физическое (энергетическое) загрязнение окружающей среды.
- •6.1. Механическое загрязнение
- •6.2.Электромагнитное загрязнение.
- •Инфракрасное излучение
- •Ультрафиолетовое излучение
- •6.3. Основные принципы и методы защиты от вредных физических (энергетических) воздействий
- •Разделение в пространстве и времени опасных зон вредных физических (энергетических) воздействий и зон пребывания людей.
- •Совершенствование источников опасных физических (энергетических) воздействий с целью максимального снижения создаваемых ими воздействий.
- •Применение защитных средств (экобиозащитная техника) для изоляции зоны пребывания человека от вредных физических (энергетических) воздействий и применение средств индивидуальной защиты.
- •6.3.1. Защита от шумового воздействия
- •6.3.2. Защита от электромагнитных полей
- •6.3.3. Защита от инфракрасного и ультрафиолетового излучения
- •6.3.4. Защита от ионизирующего излучения
4.2.3.Направление массопередачи.
Распределяемое вещество всегда переходит из фазы, где его содержание выше равновесного, в фазу, в которой -концентрация этого вещества ниже равновесной. Направление переноса распределяемого вещества, т. е. направление массопередачи, можно определить с помощью линии равновесия и рабочей линии (рисунок 3.3).
|
Рисунок 3.3. Определение направления массопередачи по У-Х диаграмме: а – рабочая линия ниже линии равновесия; б – рабочая линия выше линии равновесия. |
Пусть массопередача происходит между фазами Фх и Фу, рабочие концентрации которых равны Х и У соответственно.
Если рабочая линия расположена ниже линии равновесия {рисунок 3.3 а), то для любой точки, например точки А рабочей линии, У < У* и Х > Х*, где У* и Х* - равновесные концентрации.
Следовательно, распределяемое вещество (компонент) будет переходить в этом случае из фазы Фх в фазу Фу. Перенос в таком направлении происходит, например, в процессе ректификации, где более летучий компонент переходит из жидкой фазы (Фх в паровую Фу).
Если же рабочая линия расположена выше линии равновесия (рисунок 3.3 б), то для произвольно выбранной на рабочей линии точки А концентрация У > У* и Х < Х*. При этом распределяемый компонент будет переходить из фазы Фу в фазу Фх.
В качестве примера такого направления массопередачи можно указать на направление переноса в процессе абсорбции, где распределяемый компонент (поглощаемый газ) переходит из газовой фазы (Фу ) в жидкую (Фх).
Таким образом, на У - Х -диаграмме направление процесса массопередачи может быть определено по взаимному положению равновесной и рабочей линий.
4.3. Скорость массопередачи
4.3.1. Перенос вещества внутри фазы
Скорость массопередачи связана с механизмом переноса распределяемого вещества в фазах, между которыми происходит массообмен.
Перенос вещества внутри фазы может происходить только путем молекулярной диффузии либо путем конвекции и молекулярной диффузии одновременно. Посредством одной молекулярной диффузии вещество перемещается, строго говоря, лишь в неподвижной среде. В движущейся среде перенос вещества осуществляется как молекулярной диффузией, так и самой средой в направлении ее движения или отдельными ее частицами в разнообразных направлениях.
В турбулентном потоке перенос молекулярной диффузией преобладает только вблизи границы фазы. При турбулентном течении возникают нерегулярные пульсации скорости, под действием которых, наряду с общим движением потока, происходит перемещение частиц во всех, в том числе и в поперечном направлении. Конвективный перенос вещества, осуществляемый под действием турбулентных пульсаций, часто называют турбулентной диффузией.
Молекулярная диффузия. Молекулярной диффузией называется перенос распределяемого вещества, обусловленный беспорядочным движением самих молекул. Молекулярная диффузия описывается первым законом Фика, согласно которому количество вещества dМ продиффундировавшего за время d через элементарную поверхность dF (нормальную к направлению диффузии) пропорционально градиенту концентрации dC/dn этого вещества:
(3.13)
или
(3.14)
Коэффициент пропорциональности D в выражении закона Фика называется коэффициентом молекулярной диффузии, или просто коэффициентом диффузии. Знак минус перед правой частью уравнения указывает на то, что молекулярная диффузия всегда протекает в направлении уменьшения концентрации распределяемого компонента.
Коэффициент диффузии показывает, какое количество вещества диффундирует в единицу времени через единицу поверхности при градиенте концентрации, равном единице.
Размерность коэффициента диффузии [м2/с].
Коэффициент молекулярной диффузии представляет собой физическую константу, характеризующую способность данного вещества проникать вследствие диффузии в неподвижную среду. Величина D таким образом не зависит от гидродинамических условий, в которых протекает процесс.
Значения коэффициента диффузии D являются функцией свойств распределяемого вещества, свойств среды, через которую оно диффундирует, температуры и давления. Обычно величины D возрастают с увеличением температуры и понижением давления (для газов). В каждом конкретном случае значение D определяют по опытным данным или по теоретическим и полуэмпирическим уравнениям с учетом температуры и давления, при которых протекает процесс диффузии.
Примером приближенных зависимостей для расчета D (в м2/с) является следующее полуэмпирическое уравнение для диффузии газа А в газ В или в обратном направлении:
,
м2/с (3.15)
где Т- абсолютная температура, °К;
Р- общее давление, бар;
VА и ма - мольные объем (см3/моль) и масса (кг/кмоль) газа A;
VB и мВ — мольные объем и масса газа В.
Мольные и атомные объемы различных веществ определяются опытным путем или приводятся в справочниках.
В качестве примера расчетного уравнения для коэффициента диффузии газов или капельных жидкостей в жидкостях можно привести зависимость:
(3.16)
где — вязкость растворителя, Пас.
Коэффициенты диффузии газа в среду другого газа имеют значения 0,1 — 1 см2/сек, а при диффузии газа в жидкость они в 104 —105 раз меньше и составляют примерно 1 см2/сутки. Таким образом, молекулярная диффузия является весьма медленным процессом, особенно в жидкостях.
Турбулентная диффузия. Количество вещества dМ, переносимого в пределах фазы вследствие турбулентной диффузии, принимается, по аналогии с молекулярной диффузией, пропорциональным поверхности dF, времени d и градиенту концентрации dC/dn и определяется по уравнению:
(3.17)
где д - коэффициент турбулентной диффузии.
Коэффициент турбулентной диффузии д показывает, какое количество вещества передается посредством турбулентной диффузии в единицу времени через единицу поверхности при градиенте концентрации, равном, единице.
Коэффициент д выражается в тех же единицах, что и коэффициент молекулярной диффузии D, т. е. в м2/сек. Однако в отличие от D коэффициент турбулентной диффузии д не является физической константой; он зависит от гидродинамических условий, определяемых в основном скоростью потока и масштабом турбулентности.
Конвективный перенос. Скорость конвективного переноса вещества вместе с самой средой в направлении, совпадающем с направлением общего потока, равна:
qк = Cw (3.18)
где w - скорость потока жидкости, газа или пара;
С - коэффициент пропорциональности.
Суммарный перенос вещества в движущейся среде называют конвективным массообменом (конвективной диффузией). Распределение концентраций при конвективном массообмене определяется в самом общем виде дифференциальным уравнением массообмена в движущейся среде:
, (3.19)
где wx, wy,wz –соответственно, скорости движения фаз в направлении осей х, у, z.
