- •1.1. Развитие систем управления качеством продукции в ссср
- •1.2. Опыт управления качеством в сша
- •1.3. Опыт управления качеством в Японии
- •1.4. Опыт управления качеством в Германии
- •1.5. Опыт управления качеством во Франции
- •1.6. Общеевропейский опыт управления качеством
- •1.7. Требования к системе менеджмента качества стандартов iso серии 9000 и пути их соблюдения
- •1.7.1. Роль и развитие стандартов iso серии 9000
- •1.7.2. Принципы менеджмента качества в соответствии со стандартом iso 9000:2000
- •1.7.3. Требования к системе менеджмента качества стандарта iso 9001:2000
- •1. Система менеджмента качества.
- •2. Ответственность руководства.
- •3. Менеджмент ресурсов.
- •4. Процессы жизненного цикла продукции.
- •5. Измерение, анализ и улучшение.
- •1.8. Концепция Всеобщего управления качеством
- •1.8.1. Суть, цели, задачи и методы Всеобщего управления качеством
- •1.8.2. Основные принципы реализации Всеобщего управления качеством
- •1. Ориентация организации на потребителя.
- •2. Роль руководства.
- •3. Вовлечение сотрудников.
- •4. Процессный подход.
- •5. Постоянное совершенствование.
- •6. Участие в улучшении качества продукции всего персонала организации и поставщиков.
- •7. Принятие решений, основанное на фактах.
- •8. Взаимовыгодные отношения с поставщиками.
- •Литература
- •Глава 2. Создание, внедрение и совершенствование системы менеджмента качества согласно требованиям стандартов iso серии 9000
- •2.1. Функции управления качеством
- •2.2. Порядок создания системы менеджмента качества
- •2.2.1. Рекомендации iso
- •2.2.2. Дополнения к рекомендациям iso с учетом практики организаций стран снг
- •2.3. Задачи и методы реализации процессного подхода при создании системы менеджмента качества
- •2.3.1. Суть, значение и история возникновения процессного подхода
- •2.3.2. Классификация, виды и схемы процессов организации, методы управления ими
- •2.3.3. Выбор процессов организации, подлежащих описанию и управлению, показателей их результативности и эффективности
- •2.3.4. Методы улучшения процессов
- •2.4. Документирование системы менеджмента качества
- •2.4.1. Общие требования к документации системы менеджмента качества (смк)
- •2.4.2. Принципы создания документации смк и управления ею
- •2.4.3. Разработка документов «Миссия, видение и стратегический план развития» (мВиСпр), «Политика в области качества» (ПвОк), «Цели в области качества» (ЦвОк)
- •2.4.4. Разработка Руководства по качеству
- •2.4.5. Описание процессов смк организации
- •4.5. Описание ресурсов бизнес‑процесса.
- •4.6. Технология выполнения бизнес‑процесса.
- •4.7. Матрица ответственности за выполнение операций, входящих в состав бизнес‑процесса.
- •2.5 Методы решения основных задач при создании, внедрении и совершенствовании смк
- •2.5.1. Выбор целей и стратегии создания смк
- •2.5.2. Организация работ по созданию и внедрению смк
- •2.5.3. Организация работ по совершенствованию смк
- •Литература
- •Глава 3. Оценка системы менеджмента качества
- •3.1. Контроль качества в машиностроении
- •3.1.1. Задачи, объекты, методы и организация контроля качества
- •3.1.2. Испытания промышленной продукции [2]
- •3.1.3. Контроль точности и стабильности технологических процессов
- •3.1.4. Управление несоответствующей продукцией
- •3.2. Оценка результативности системы менеджмента качества (смк)
- •3.2.1. Общие положения
- •3.2.2. Методика экспертной балльной оценки результативности смк
- •3.2.3. Организация и порядок проведения работ по оценке результативности смк
- •3.3. Оценка удовлетворенности потребителей
- •3.3.1. Роль, задачи и методы оценки удовлетворенности потребителей
- •3.3.2. Источники информации об удовлетворенности потребителей, методы ее сбора
- •3.3.3. Обработка и анализ информации об удовлетворенности потребителей
- •Литература
- •Глава 4. Методы и инструменты управления качеством
- •4.1. Структурирование функции качества (сфк)
- •4.1.1. Цели, области применения, эффективность и средства сфк
- •4.1.2. Методика сфк
- •4.2. Анализ видов и последствий потенциальных отказов (fmea13)
- •4.2.1. Цели и задачи fmea
- •4.2.2. Виды и области применения fmea
- •4.2.3. Методы выполнения fmea
- •4.2.4. Последовательность проведения fmea
- •4.2.5. Распространение и эффективность fmea
- •4.3. Простые инструменты контроля качества
- •4.3.1. Возникновение и роль простых инструментов контроля качества
- •4.3.2. Контрольный листок
- •4.3.3. Гистограмма
- •4.3.4. Диаграмма разброса
- •4.3.5. Расслоение, или стратификация, данных
- •4.3.6. Графики [15]
- •4.3.7. Диаграмма Парето
- •4.3.8. Причинно‑следственная диаграмма
- •4.3.9. Диаграмма (блок‑схема) потока
- •4.3.10. Контрольные карты
- •4.4. «Семь новых инструментов контроля качества»
- •4.4.1. Назначение, создание и применение «Семи новых инструментов контроля качества»
- •4.4.2. Диаграмма сродства (дс)
- •4.4.3. Диаграмма взаимосвязей (дв)
- •4.4.4. Древовидная диаграмма (дд)
- •4.4.5. Матричная диаграмма (мд)
- •4.4.6. Стрелочная диаграмма (сд)
- •4.4.7. Диаграмма планирования осуществления процесса (pdpc)
- •4.4.8. Анализ матричных данных (матрица приоритетов)
- •4.5. Экспертные методы решения проблем качества
- •4.5.1. Понятие об экспертных методах. Области их применения
- •4.5.2. Методы экспертных оценок
- •4.5.3. Обработка результатов экспертизы
- •4.5.4. Анализ экспертных оценок
- •4.6. Методы Тагути
- •4.6.1. Основные элементы философии качества Тагути
- •4.6.2. Модели процессов по Тагути
- •4.6.3. Этапы и методы проектирования изделий и процессов по Тагути
- •Литература
- •Глава 5. Современные системы менеджмента качества и методы повышения эффективности организаций
- •5.1. Развитие и выбор систем менеджмента качества
- •1. По отношению к целям‑стратегиям (с учетом баланса интересов заинтересованных сторон).
- •2. По отношению к материальным, финансовым, информационным и временным ресурсам (то есть по отношению к целям‑средствам).
- •3. По отношению к различным аспектам (функциям) менеджмента.
- •5.2. Система производительного обслуживания оборудования с участием всего персонала (трм)
- •5.2.1. Создание, развитие, эффективность трм
- •5.2.2. Направления и этапы развертывания трм на предприятии, организация внедрения системы трм, оценка ее эффективности
- •5.2.3. Обучение персонала при развертывании и функционировании системы трм
- •5.2.4. Самостоятельное обслуживание оборудования операторами в системе трм
- •5.2.5. Отдельные улучшения
- •5.2.6. Планово‑предупредительный ремонт и техническое обслуживание (ппр и то) оборудования в системе трм
- •5.2.7. Управление качеством в системе трм
- •5.3. Система «Экономное производство» (Lean Production)
- •5.3.1. Возникновение системы, ее цели, развитие, эффективность
- •5.3.2. Инструменты и методики реализации «Экономного производства» (эп)
- •5.3.3. Последовательность развертывания эп
- •5.4. Методология «Шесть сигм»
- •5.4.1. Содержание методологии «Шесть сигм», особенности реализации, достоинства и недостатки
- •5.4.2. Возникновение и развитие методологии «Шесть сигм»
- •5.4.3. Инструменты реализации методологии «Шесть сигм»
- •5.4.4. Пути и этапы развертывания методологии «Шесть сигм» в организации
- •5.4.5. Эффективность методологии «Шесть сигм»
- •5.5. Совместная реализация концепций «Шесть сигм» (Six Sigma) и «Экономное производство» (Lean Production)28
- •5.6. Система «Упорядочение», или «5s»
- •5.6.1. Цели, создание и развитие системы
- •5.6.2. Методология внедрения системы
- •5.6.3. Рекомендации по реализации системы в производственных условиях
- •5.6.4. Эффективность системы, области ее применения
- •5.7. Бенчмаркинг
- •5.7.1. Содержание, развитие, разновидности бенчмаркинга
- •5.7.2. Этапы проведения бенчмаркинга
- •5.7.3. Подготовка к бенчмаркингу
- •5.7.4. Сбор бенчмаркинговой информации
- •5.7.5. Методы анализа и применения бенчмаркинговой информации
- •5.7.6. Области применения и эффективность бенчмаркинга
- •5.8. Реинжиниринг бизнес‑процессов и организаций
- •5.8.1. Предпосылки реинжиниринга как способа совершенствования организации бизнеса
- •5.8.2. Методы реализации реинжиниринга
- •5.8.3. Условия развертывания реинжиниринга
- •5.8.4. Результаты реинжиниринга
- •5.8.5. Причины успеха и неудачи реинжиниринга в организации
- •5.9. Реструктуризация предприятий и компаний
- •5.10. Управление персоналом
- •5.10.1. Важность задачи управления персоналом в современных условиях
- •5.10.2. Развитие концепции управления персоналом
- •5.10.3. Многоуровневая модель управления персоналом
- •5.10.4. Способы мотивации персонала
- •5.10.5. Организация управления персоналом
- •5.11. Управление знаниями
- •5.11.1. Основные понятия
- •5.11.2. Стратегии управления знаниями [79]
- •5.11.3. Обучение персонала
- •5.12. Экономика качества
- •5.12.1. Понятие и значение экономики качества
- •5.12.2. Структура затрат на качество
- •5.12.3. Методы измерения и анализа затрат на качество
- •5.12.4. Управление затратами на качество
- •5.12.5. Оценка потерь от низкого качества продукции (услуг) и эффективности проектов его улучшения
- •5.12.6. Оптимизация уровня качества и затрат на него
- •Литература
- •Заключение
4.6.3. Этапы и методы проектирования изделий и процессов по Тагути
Тагути ввел трехстадийный подход к установлению номинальных значений параметров изделия и процесса и допусков на них: системное проектирование, параметрическое проектирование и проектирование допусков [61].
Системное проектирование– процесс применения научных и инженерных знаний к разработке модели изделия. Модель изделия определяет начальные значения параметров изделия (или процесса). Системное проектирование включает учет как требований потребителя, так и производственных условий. Изделие не будет удовлетворять требованиям потребителя, если они не учитываются при проектировании. Подобным же образом проектирование процесса изготовления требует понимания условий производства.
Параметрическое проектирование рекомендуется выполнять в два этапа:
• определение уровней управляемых факторов (Z), которые минимизируют чувствительность ко всем факторам помех (х). Это собственно параметрическое проектирование;
• оптимизация значений Z в найденной области их изменения с учетом факторов помех. Это оптимальное проектирование.
Проектирование допусков– процесс определения допусков вблизи номинальных значений, которые идентифицированы с помощью параметрического и оптимального проектирования.
Методику параметрического проектирования путем использования нелинейных влияний параметров изделия или процесса на выходные характеристики рассмотрим на примере [58]. Пусть имеется электрическая схема. Рассмотрим в качестве ее выходной характеристики выходное напряжение схемы и его заданное значение y0. Предположим, что выходное напряжение схемы главным образом определяется коэффициентом усиления транзистора Z в цепи и разработчик схемы свободен в выборе номинального значения этого коэффициента усиления.
Допустим, что влияние коэффициента усиления транзистора на выходное напряжение нелинейно (рис. 4.59).
Рис. 4.59. Схема выбора рационального значения управляемого фактора Z при нелинейной взаимосвязи отклика у c Z
Чтобы получить выходное напряжение y0, разработчик схемы может выбрать номинальное значение коэффициента усиления транзистора Z0. Если действительное значение коэффициента отклоняется от номинального значения Z0, выходное напряжение отклонится от y0. Коэффициент усиления транзистора может отклониться от Z0 из‑за несовершенства производства транзистора, деградации схемы в течение срока службы и внешних факторов.
Если распределение коэффициента усиления транзистора такое, как показано на рисунке (см. рис. 4.59), выходное напряжение будет иметь большой разброс. Один путь уменьшения вариации выхода – использовать дорогой транзистор, коэффициент усиления которого имеет более узкое распределение вблизи Z0. Другой путь – выбрать иное значение коэффициента усиления. Например, если номинальное значение этого коэффициента Z1 то выходное напряжение будет иметь значительно меньший разброс. Однако среднее значение y1 выходного напряжения, связанное с коэффициентом усиления транзистора Z1, далеко отстоит от заданного значения y0.
Предположим, что существует другой элемент схемы (например, резистор), который линейно влияет на выходное напряжение, и разработчик схемы может выбрать номинальное значение этого элемента так, чтобы сдвинуть среднее значение от y1 к y0. Подгонка среднего значения выходной характеристики к ее заданному значению обычно более легкая техническая задача, чем уменьшение вариации выхода. Когда схема разработана таким образом, что номинальное значение коэффициента усиления транзистора Z равно Z1, можно использовать недорогой транзистор, имеющий широкое распределение около Z1. Конечно, это изменение не обязательно улучшит разработку схемы, если будет связано с увеличением разброса других выходных характеристик схемы.
После выбора номинальных значений управляемых факторов (параметров проектирования) необходимо оценить влияние на них тех факторов помех, которые могут систематически варьироваться. Такое исследование Г. Тагути рекомендует выполнить с помощью статистического планирования экспериментов при использовании ортогональных планов (см. рис. 4.60).
Цель указанного эксперимента – идентифицировать такие значения параметров проектирования, при которых влияние факторов помех на выходную характеристику минимально. Эти значения определяются путем систематического варьирования значений параметров проектирования в эксперименте и сравнения влияния факторов помех для каждого тестового набора.
Эксперименты с параметрами проектирования, по Г.Тагути, связаны с двумя матрицами: матрицей параметров проектирования и матрицей факторов помех. Матрица параметров проектирования определяет их тестовые значения. Ее столбцы представляют параметры проектирования, а строки – различные комбинации тестовых значений параметров. Матрица факторов помех представляет тестовые уровни факторов помех. Ее столбцы представляют факторы помех, а строки – различные комбинации уровней помех. Полный эксперимент связан с комбинированием матрицы параметров проектирования и матрицы факторов помех (см. рис.4.60). Каждый тестовый набор матрицы параметров проектирования сочетается со всеми строками матрицы факторов помех, и в результате для каждого тестового набора получаются 4 промежуточных значения характеристики, отвечающих 4 комбинациям уровней помех в матрице факторов помех. Результирующая выходная
Рис. 4.60. Схема планирования экспериментов при оптимизации параметров проектирования с учетом влияния факторов помех
характеристика оценивается для всех промежуточных значений, полученных для каждого из 9‑тестовых наборов. Таким образом, вариация множества значений выходной характеристики имитирует вариацию выхода изделия (или процесса) для заданных значений параметров проектирования.
В случае непрерывных выходных характеристик (см. рис. 4.60) множество результатов наблюдений для каждого тестового набора матрицы параметров проектирования используется для вычисления критерия, называемого выходной статистикой.
Выходная статистика позволяет оценить влияние факторов помех. Вычисленные значения выходной статистики используются для оценки оптимальных значений параметров проектирования. Оценка затем проверяется в эксперименте. Исходные значения параметров проектирования не изменяются, если подтверждается достоверность оценки. Может потребоваться несколько серий таких экспериментов с параметрами проектирования, чтобы идентифицировать значения параметров, для которых влияние факторов помех достаточно мало.
В качестве выходной статистики, как показано в пункте 4.6.2, используются отношение сигнал/шум, которое с учетом поставленной задачи вычисляется по одной из формул 4.27–4.29. Критерием оптимальности параметров проектирования, как уже отмечалось, является максимальное значение отношения сигнал/шум.
Эксперименты с параметрами проектирования можно осуществить двумя способами: физические эксперименты, расчеты на компьютере. Второй способ реализуем, если имеется численное представление функции y= f(z, x), связывающей выходную характеристику y с параметрами проектирования z и факторами помех x.
Г. Тагути рекомендует использовать статистическое планирование экспериментов для не менее чем 4 различных целей.
1. Идентификация значений параметров проектирования, при которых влияние источников помех на выходную характеристику минимально.
2. Идентификация значений параметров проектирования, которые уменьшают затраты без ущерба качеству.
3. Идентификация таких параметров проектирования, которые значительно влияют на среднее значение выходной характеристики, но не влияют на ее разброс. Подобные параметры могут быть использованы для изменения среднего значения.
4. Идентификация таких параметров проектирования, влияние которых на выходные характеристики несущественно. Допуски на подобные параметры могут быть ослаблены.
Общая схема оптимального проектирования по Г. Тагути показана на рис. 4.61 [60].
Рис. 4.61. Схема оптимального проектирования по Тагути
Эксперименты по оптимизации могут проводиться на объекте или моделироваться с помощью программного обеспечения и математической модели изделия. Они начинаются с выбора отклика, который нужно оптимизировать, и 4 типов факторов (управляемых, сигнальных, масштабноовыравнивающих и связанных с помехами) для анализа. С помощью ортогональной матрицы затем отбирается совокупность n значений управляемых факторов z. Для каждого отобранного значения z(zi) проводятся эксперименты посредством моделирования помехи x и желаемого диапазона M. Эксперименты, проводимые на основе ортогональных матриц, обеспечивают эффективные способы покрытия пространства помех и сигналов. Следующий шаг – калибровка, масштабирование и выравнивание для оценивания величин , η(zi).
Отметим, что на практике нет необходимости определять наилучшее значение масштабно‑выравнивающего фактора R для каждого zi. Достаточно определить η(zi).
После оценивания η(zi) для i = l, ..., n проводится анализ средних и дисперсий для определения влияния каждого элемента z на η. Эта информация затем используется для выбора оптимальных уровней z, которые обозначаются z*.
Следующий шаг – проверочный эксперимент при z*. Если результаты удовлетворительные, оптимизация заканчивается. Если нет, то проводится повторный анализ данных и/или следующий цикл экспериментов.
Пример применения методов Тагути при проектировании процесса резания приведен в [62].
