Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Kane_M._Sistemiy_Metodiy_I_Instru.rtf
Скачиваний:
3
Добавлен:
01.07.2025
Размер:
13.19 Mб
Скачать

4.3.4. Диаграмма разброса

Диаграмма разброса позволяет без математической обработки экспериментальных данных о значениях двух переменных на основе графического представления этих данных оценить характер и тесноту связи между ними. Это дает возможность линейному персоналу контролировать ход процесса, а технологам и менеджерам – управлять им.

Этими двумя переменными могут быть:

• характеристика качества процесса и фактор, влияющий на ход процесса;

• две различные характеристики качества;

• два фактора, влияющие на одну характеристику качества.

Рассмотрим примеры использования диаграмм разброса в указанных случаях [15].

К примерам применения диаграммы разброса для анализа зависимости между причинным фактором и характеристикой (следствием) относятся диаграммы для анализа зависимости суммы, на которую заключены контракты, от числа поездок бизнесмена с целью заключения контрактов (планирование эффективных поездок); процента брака от процента невыхода на работу операторов (контроль персонала); числа поданных предложений от числа циклов (от времени) обучения персонала (планирование обучения); расхода сырья на единицу готовой продукции от степени чистоты сырья (стандарты на сырье); выхода реакции от температуры реакции; толщины плакировки от плотности тока; степени деформации от скорости формовки (контроль процессов); размера принятого заказа от числа дней, за которое производится обработка рекламаций (инструкции по ведению торговых операций, инструкции по обработке рекламаций) и т. д.

При наличии корреляционной зависимости причинный фактор оказывает очень большое влияние на характеристику, поэтому, удерживая этот фактор под контролем, можно достичь стабильности характеристики. Можно также определить уровень контроля, необходимый для требуемого показателя качества.

Примерами применения диаграммы разброса для анализа зависимости между двумя причинными факторами могут служить диаграммы для анализа зависимости между содержанием рекламаций и руководством по эксплуатации изделия (движение за отсутствие рекламаций); между циклами закалки отожженной стали и газовым составом атмосферы (контроль процесса); между числом курсов обучения оператора и степенью его мастерства (планирование обучения и подготовки кадров) и т. д.

При наличии корреляционной зависимости между отдельными факторами значительно облегчается контроль процесса с технологической, временной и экономической точек зрения.

Применение диаграммы разброса для анализа зависимости между двумя характеристиками (результатами) можно видеть на таких примерах, как анализ зависимости между объемом производства и себестоимостью изделия; между прочностью на растяжение стальной пластины и ее прочностью на изгиб; между размерами комплектующих деталей и размерами изделий, смонтированных из этих деталей; между прямыми и косвенными затратами, составляющими себестоимость изделия; между толщиной стального листа и устойчивостью к изгибам и т. д.

При наличии корреляционной зависимости можно осуществлять контроль только одной (любой) из двух характеристик.

Построение диаграммы разброса (поля корреляции) производят следующим образом.

1. Планируют и выполняют эксперимент, при котором реализуется взаимосвязь y= f(x), либо производят сбор данных о работе организации, об изменениях в обществе и т. п., в которых выявляется взаимосвязь y= f(x). Первый путь получения данных характерен для технических (конструкторских или технологических) задач, второй путь – для организационных и социальных задач. Желательно получить не менее 25–30 пар данных, которые заносят в таблицу. Таблица имеет три графы: номер опыта (или детали), значения уи х.

2. Оценивают однородность экспериментальных данных с помощью критериев Груббса или Ирвина [18]. Резко выделяющиеся результаты, не принадлежащие данной выборке, исключают попарно.

3. Находят максимальные и минимальные значения xи у. Выбирают масштабы по оси ординат (у)и оси абсцисс (x)так, чтобы изменение факторов по этим осям имело место на участках примерно одинаковой длины. Тогда диаграмму будет легче читать. На каждой оси нужно иметь 3‑10 градаций. Желательно использовать целые числа.

4. Для каждой пары значений yi – xiна графике получают точку как пересечение соответствующих ординаты и абсциссы. Если в разных наблюдениях получены одинаковые значения вокруг точки, рисуют столько концентричных кружков, сколько этих значений минус одно, либо наносят все точки рядом, либо рядом с точкой указывают общее число одинаковых значений.

5. На диаграмме или рядом с ней указывают время и условия ее построения (общее число наблюдений, Ф. И. О. оператора, собравшего данные, средства измерений, цена деления каждого из них и др.).

6. Для построения эмпирической линии регрессии диапазон изменения x(или у)разбирают на 3–5 равных частей. Внутри каждой зоны для попавших в нее точек находят xiи yi (j– номер зоны). Наносят эти точки на диаграмму (на рис. 4.20 они обозначены треугольниками) и соединяют между собой. Полученная ломаная более наглядно иллюстрирует вид зависимости y= f(x).

Эмпирическую линию регрессии строят обычно на этапе обработки опытных данных, но даже само расположение точек диаграммы рассеяния в факторном пространстве (y – x)без построения этой линии позволяет предварительно оценить вид и тесноту взаимосвязи y= f(x).

Рис. 4.20. Диаграмма разброса Fpr = f(ET) при зубофрезеровании цилиндрических шестерен; Fpr – погрешность направления зубьев, ET – биение опорного торца заготовки

Взаимосвязь двух факторов может быть линейной (рис. 4.21‑4.24) или нелинейной (рис. 4.26, 4.27), прямой (см. рис. 4.21, 4.22) или обратной (см. рис. 4.23, 4.24), тесной (см. рис. 4.21, 4.23, 4.27) или слабой (легкой) (см. рис. 4.22, 4.24, 4.26) или вообще отсутствовать (рис. 4.25).

Рис. 4.21. Прямая корреляция

Рис. 4.22. Легкая прямая корреляция

Рис. 4.23. Обратная (отрицательная) корреляция

Рис. 4.24. Легкая обратная корреляция

Рис. 4.25. Отсутствие корреляции

Рис. 4.26. Легкая криволинейная корреляция

Рис. 4.27. Криволинейная корреляция

Для линейной зависимости, как известно, характерно прямо пропорциональное изменение yпри изменении x,которое может быть описано уравнением прямой линии:

у= а + bx. (4.3)

Линейная зависимость является прямой, если имеет место увеличение значений yпри увеличении значений х. Если с ростом xзначения yуменьшаются – зависимость между ними обратная.

Если имеет место закономерное изменение положения точек на диаграмме рассеяния, когда с изменением xпроисходит линейное или нелинейное изменение y, значит, существует взаимосвязь между yи x. Если такого изменения положения точек нет (см. рис. 4.25), значит, связь между yи xотсутствует. При наличии связи малый разброс точек относительно их воображаемой средней линии свидетельствует о тесной связи yс x, большой разброс точек – о слабой (легкой) связи yс x.

После качественного анализа зависимости y= f(x) по форме и расположению диаграммы рассеяния выполняют количественный анализ этой зависимости. При этом часто используют такие методы, как метод медиан [15, 19], метод сравнения графиков изменения значений yи xво времени или контрольных карт для этих значений [15], оценка временного лага взаимосвязи переменных [4], методы корреляционно‑регрессионного анализа [18, 19].

Первые два из перечисленных методов предназначены для оценки наличия и характера взаимосвязи (корреляции) между yи x. Достоинство этих методов – отсутствие сложных расчетов. Рекомендуются при обработке результатов непосредственно на рабочем месте, где производились измерения. Методы реализуются путем подсчета точек в определенных зонах диаграммы рассеяния или контрольной карты, их суммирования и сравнения полученных значений с табличными. Методы не дают количественной оценки степени тесноты связи yи x.

Третий метод используется для определения периодов времени, когда между двумя характеристиками качества существует наиболее тесная взаимосвязь. Для этого строятся и анализируются диаграммы разброса между значениями yixi со сдвигом во времени. Сначала строятся диаграммы между значениями yixi, затем y.– xi, затем y. +2x.и т. д. Здесь i– период времени, в который измерялись значения yи x.Это могут быть час, день, месяц и т. п.

Наиболее объективную, количественную оценку степени тесноты и характера взаимосвязи между значениями изучаемых параметров yи xможно получить при использовании методов корреляционно‑регрессионного анализа (КРА). Достоинством этих методов является также то, что достоверность их результатов поддается оценке.

Степень тесноты линейной взаимосвязи между двумя факторами оценивается с помощью коэффициента парной корреляци:

где у, х– средние арифметические значения у.и х.в данной выборке, i– номер опыта, Sy, Sx – их средние квадратические (стандартные) отклонения, n– объем выборки (часто n= 30 – 100).

Достоверность ryx оценивается обычно с помощью критерия Стьюдента [18]. Значения ryx находятся в интервале от ‑1 до +1. Если они достоверны, то есть существенно отличаются от 0, значит, между исследуемыми факторами имеется линейная корреляционная зависимость. В противном случае эта зависимость отсутствует либо является существенно нелинейной. Если ryx равен +1 или ‑1, что встречается крайне редко, между исследуемыми факторами существует функциональная взаимосвязь. Знак ryx говорит о прямом (+) или обратном (‑) характере взаимосвязи между исследуемыми факторами.

Степень тесноты нелинейной взаимосвязи оценивается с помощью корреляционного отношения п [19].

При наличии достоверной взаимосвязи yс xследует найти ее математическое описание (модель). При этом часто используют полиномы различной степени. Линейную взаимосвязь описывают полиномом первой степени (4.3), нелинейную – полиномами более высоких степеней. Адекватность уравнения регрессии опытным данным обычно оценивается с помощью F‑критерия Фишера [18].

Зависимость (4.3) может быть записана в виде

Зависимость y= f(x)может быть использована для решения оптимизационной или интерполяционной задачи. В первом случае по допустимому (оптимальному) значению yустанавливают допустимое значение x.Во втором случае определяют значения yпри изменении значений x.Необходимо отметить, что зависимость y= f(x),установленная на основе экспериментальных данных, справедлива лишь для условий, в которых эти данные были получены, в том числе для имевших место интервалов изменения yи x.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]