Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
GEK_OTVETI_2016(1).doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
24.07 Mб
Скачать

17. Навигационный параметр, градиент навигационного параметра, навигационная изолиния, линия положения, полоса положения.

Навигационным параметром называют физическую величину, которая известным образом зависит от положения судна относительно ориентиров и измеряется для определения места судна.

Примеры параметров: расстояние до ориентира D, высота светила h, пеленг ориентира П, разность расстояний D и т. п.

Градиент навигационного параметра – это вектор g направленный перпендикулярно к изолинии в сторону увеличения навигационного параметра. Вектор этого модуля характеризует наибольшую скорость изменения в данном месте, причем:

,

где - навигационный параметр;

- линейное смещение навигационной изолинии.

Для определения градиентов вместо точного равенства пользуется приближенным выражением:

,

где - малое приращение навигационного параметра;

- смещение навигационной изолинии.

По определению:

градиент дистанции - = , поэтому . Его направление равно пеленгу П;

градиент высоты светила равен градиенту дистанции ;

градиент пеленга ; , поэтому .

Геометрическое место точек, отвечающее постоянному значению навигационного параметра, называется навигационной изолинией. В навигации для определения места судна используются следующие навигационные параметры и соответствующие им изолинии:

Пеленг. На судне измерен истинный пеленг (ИП) предмета А, равный . Проложив на карте линию пеленга АД, можно увтерждать, что судно в момент взятия пеленга находилось на этой линии. Прямая линия АД, отвечающая условию задачи, на которой находилось судно в момент наблюдения, будет называться изолинией пеленга или изопеленгой.

Расстояние. Измерено расстояние Д между судном и ориентиром А. В этом случае судно будет находится на окружности радиусом Д с центром в точке А. Эта окружность будет называться изолинией расстояния или изостадией.

Горизонтальный угол. Если измерен горизонтальный угол между ориентирами А и Б, равный , или этот угол вычислен как разность двух пеленгов . Эта окружность называется изолинией горизонтального угла или изогоной.

Разность расстояний. В некоторых радионавигационных системах измеряется разность расстояний до двух ориентиров. Тогда изолинией разности расстояний будет гипербола.

Линией положения называется прямая, заменяющая небольшой участок навигационной изолинии вблизи счислимого места судна. Это определение в первую очередь имеет в виду касательную к изолинии.

При воздействии случайных погрешностей измерений смещение каждой линии положения характеризуется линейной величиной , в результате чего образуется полоса положения. Если смещение равно среднему квадратическому отклонению , то полоса положения

Погрешность определения места, являющаяся результатом случайных погрешностей в двух линиях положения, характеризуется площадью параллелограмма, образованным двумя параметрами и .

Вероятность нахождения судна в площади параллелограмма около 50%; если взять для расчёта 2 , то вероятность увеличивается до 95%, а если принять предельную ошибку 3 , то вероятность повышается до 99%.

Для удобства анализа точность обсервации места судна целесообразнее оценить не площадью, а одним числом. За среднюю квадратическую ошибку обсервованного места М принимают радиус круга, охватывающий эллипс погрешности. Этот радиус равен:

.

Вероятность того, что место судна находится внутри радиуса круга М изменяется от 63,2 до 68,3% и зависит от соотношения полуосей a и b.

18. Опознавание различных береговых ориентиров и средств навигации в дневное и ночное время. Дальность открытия маяка. Средства навигационного оборудования.

Опасные в навигационном отношении места как в открытом море, так и вблизи берегов ограждаются соответствующими знаками или сооружениями, которые называются средствами навигационного оборудования.

Средства навигационного оборудования подразделяются на береговые и плавучие.

1. Береговые СНО.

К береговым СНО относятся маяки, навигационные и створные знаки.

Маяк представляет собой фундаментальное строение башенного типа, оборудованное в верхней части специальным световым аппаратом. Маяк не только предупреждает об опасности, но и служит для определения места судна в море. Для того чтобы мореплаватель мог опознать маяки, их строят различной приметной формы и придают огню каждого маяка особую световую характеристику. Это помогает судоводителю безошибочно определить местонахождение своего судна (в том случае, если он детально изучил предстоящий район плавания).

Отличительной характеристикой маяка являются: характер и цвет огня; число проблесков или затмений; период проблесков; Дальность видимости маяка в милях на картах и пособиях приведена для высоты глаза наблюдателя в 5 м; указывается обслуживаемый маяк пли нет; сведения о техническом вооружении маяка; сведения об имеющихся лоцманских и спасательных станциях и средствах связи.

Огонь маяков бывает: постоянным, проблесковым, группопроблесковым, постоянным с проблесками, постоянным с группой проблесков. Огонь маяка может быть цветопеременным, т. е. меняющим цвет, хотя, как правило, его цвет неизменный .

Для обеспечения безопасности плавания во время тумана и ограниченной видимости на маяках подают звуковые сигналы при помощи сирены, тифона, наутфона, колокола, предупреждающие судоводителя о близкой навигационной опасности. На картах маяки обозначаются звездочками с просветом посередине и с точкой в центре, указывающей точное положение маяка на карте. На генеральных картах все маячные огни независимо от их цвета изображаются желтыми пятнами. Около условного изображения маяка на карте ставится его полная характеристика и название. Если маяк светит только в определенном секторе, то этот сектор наносится в виде пунктира. Например, рядом с обозначением маяка на карте стоит надпись ГР Пр (2) (20с) 18м Т (с) РМк ЛС. Расшифровывается это так: маяк имеет огонь группо-проблесковый, 2 проблеска в группе, продолжительность периода 20 секунд, дальность видимости огня 18 миль, туманный сигнал — сирена, имеются радиомаяк и лоцманская станция.

Рис. 33. Береговые створные знаки

.Навигационные знаки — специальные сооружения различной конструкции, по размерам значительно меньше маяков. Они могут быть освещаемыми и неосвещаемыми. Включение огня на знаках производится обычно автоматически при помощи фотоэлементов. Знаки постоянно не обслуживаются. Освещаемые навигационные знаки имеют отличительную от других знаков района световую характеристику, которая, как правило, бывает проблесковой, постоянной или группо-проблесковой. Кроме того, освещаемые знаки различаются по цвету огня. Само расположение знака и характеристика его огня наносятся на навигационную карту. Дальность видимости огней таких знаков достигает 6—8 миль при ясном состоянии атмосферы.

Створные знаки устанавливаются на берегу для указания судового хода на фарватерах и в узкостях (рис. 33). Они служат для обеспечения безопасности прохода судов в районах со стесненными условиями плавания. Кроме того, створные знаки устанавливаются при оборудовании мерных линий Знаки бывают деревянными, металлическими, каменными, освещаемыми и неосвещаемыми. Днем на белых (черных) трапециевидных щитах отчетливо видны черные (белые) вертикальные полосы, а ночью в верхней части щитов зажигаются огни, чаще всего красного или зеленого цвета, чтобы их легко было отличить от любых случайных огней населенного берегового пункта. Направление линий створов на фарватере, узкости или мерной линии нанесено па навигационной карте. На карту мелкого масштаба нельзя одновременно нанести два створных знака, тогда наносят один знак и линию, а рядом ставят пояснительную надпись «2 ств. зн. ».

Линия девиационных, ограничительных и поворотных створов на карте обозначается точечным пунктиром, а ходовые направления— сплошной линией. Значения направления створов даются на карте только истинные.

2. Плавучие средства навигационного оборудования.

К плавучим средствам навигационного оборудования относятся плавучие маяки, буи, бакены и вехи. Плавучие средства навигационного оборудования ограждают участок водной поверхности, который представляет опасность для плавания судов, или указывают направление фарватера в районах, где можно плавать лишь по определенным путям.

Плавучий маяк —судно, оборудованное маячной аппаратурой и установленное на якорях в точно обозначенном на карте месте. Плавучий маяк служит подходным ориентиром к порту, заливу, бухте и т. д. и на нем часто размещается лоцманская вахта. Судно имеет отличительную окраску, а на его бортах наносится название маяка.

Рис. 35. Буй освещаемый

Рис. 36 Веха: 1 — деревянный шест; 2 — буек; 3 — топовая фигура; 4 — якорь

На морских навигационных картах плавучий маяк обозначается знаком, похожим на кораблик с мачтой посередине. Рядом с его обозначением и названием на карте дается полная характеристика огня. Из плавучих средств навигационного оборудования он является наиболее надежным. Если плавучий маяк по каким-либо причинам не находится на своем штатном месте, то на нем поднимают установленные сигналы: днем два черных шара, один в носовой, другой в кормовой части судна, ночью — два красных огня, расположенных по одному в носовой и кормовой частях судна. Днем вместо черных шаров могут быть подняты два красных флага.

Буй (рис. 35) — полый металлический корпус шарообразной, конусообразной или цилиндрической формы с укрепленной на нем ажурной надстройкой, в которой находится световая аппаратура. К нижней части металлического корпуса прикреплено якорное устройство. Характер и цвет огней устанавливается в зависимости от назначения буя. Для предупреждения судоводителя во время плохой видимости о близкой навигационной опасности буи снабжаются средствами туманной сигнализации — колоколами, свистками или гудками. На боковых сторонах буя отличительной краской наносится его порядковый номер.

Бакен — плавучий предостерегательный знак цилиндрической, конической или другой формы, устанавливаемый на якоре для ограждения опасностей или фарватеров. Для того чтобы отличить один бакен от другого, они окрашиваются в различные цвета.

Веха (рис. 36) — вертикально стоящий на якоре деревянный шест с топовой фигурой. Веха поддерживается на плаву специальным закрепленным на ней буйком. Вехи имеют различную окраску и форму фигур, что позволяет мореплавателю определить безопасную сторону прохода судна.

Дальностью видимости называется наибольшее расстояние, с которого глазу наблюдателя становится видимым наблюдаемый объект. Различают географическую и оптическую дальности видимости.

Географическая дальность видимости — дальность открытия ночью маячного огня, днем башни маяка или знака — зависит от кривизны земли, рефракции атмосферы и высоты огня, башни или знака над уровнем моря (рис. 21). Дальность открытия при высоте глаза наблюдателя, равной 5 м определяется по формуле

где L — дальность открытия в морских милях; Н — высота маяка или знака в метрах над уровнем моря; 2,08 и 4,65 — постоянные коэффициенты.

Рис. 21. Схема дальности видимости: АВ — географическая дальность видимости; АС— оптическая дальность видимости

За счет рефракции дальность открытия увеличивается в среднем на 8%. Оптическая дальность видимости зависит от световых данных маяка, прозрачности атмосферы и условий наблюдения (от кривизны земли не зависит). 19. Определение места судна по визуальным пеленгам береговых ориентиров и средств навигации, включая маяки, бакены, буи и топографические знаки в дневное и ночное время суток. СКП определения места судна.

Определение места по двум пеленгам:

Способ определения места судна по двум пеленгам один из наиболее распространённых при плавании в узкостях или вдоль берега, вблизи навигационных опасностей.

Это объясняется ещё и тем, что часто в видимости судна не бывает одновременно большого количества ориентиров. Сущность способа состоит в следующем. В быстрой последовательности берут пеленги двух объектов (маяков, знаков, мысов и т. д.) Рассчитывают истинные пеленги, если имеется поправка компаса, и прокладывают их на карте.

В точке пересечения пеленгов будет обсервованное место судна F.

A Δ B Δ

Θ

F

Этот способ имеет ряд преимуществ (простота и быстрота определения), но и ряд недостатков, главным из которых является полное отсутствие контроля при единичном определении.

Пеленгованию, как и любому измерению, сопутствуют случайные ошибки, к которым можно отнести ошибки из-за неточности наведения, колебаний в момент качки, отсутствие стабилизации в вертикальной плоскости и др. Это приводит к тому, что любому измеренному пеленгу соответствует ошибка , град. Если такую ошибку подставить в формулу для оценки точности обсервованного места, то получим формулу для средней квадратической погрешности обсервации по двум пеленгам:

.

Формула показывает, что при малых и близких к 180о углах  ошибки увеличиваются. Следовательно, место будет получаться точнее при . Точность определения зависит также от расстояния до ориентиров.

При определении места судна по двум пеленгам ошибка в принятой поправке компаса может быть значительно более случайных ошибок.

Для определения правильного значения поправки компаса по пеленгам двух предметов достаточно найти величину её ошибки, а затем алгебраически вычесть эту ошибку из принятого значения поправки компаса: , где К – поправка компаса, Кпр – принятое значение поправки компаса, к – ошибка принятого значения с её знаком.

Определение места по трём пеленгам.

При определении места по трём пеленгам в быстрой последовательности берут пеленга трёх предметов A, B, C. Переводят их в истинные и прокладывают на карте. Если бы наблюдения не содержали ошибок и пеленги были взяты одновременно, то все три пеленга пересеклись бы в одной точке F, представляющей собой место судна.

Однако из-за неизбежного действия ряда факторов пеленги обычно не пересекаются в одной точке, а образуют так называемый треугольник погрешности. Его появление может быть вызвано различными видами ошибок:

  • Промахами при снятии счёта и при исправлении компасных пеленгов;

  • Ошибки в опознавании ориентиров;

  • Ошибки в принятой поправке компаса;

  • Случайные ошибки пеленгования в прокладке.

Чтобы избежать графических ошибок при построении, можно рассчитать параллельное смещение каждой линии положения при изменении поправки на 3…5о и построить новый треугольник погрешности, перенеся все линии положения в сторону увеличения или уменьшения. Для рассчёта смещения необходимо снять с карты расстояния до каждого из трёх предметов. Тогда:

, , .

Влияние ошибки, вызванной неодновременным взятием пеленгов, можно исключить несколькими способами. Один из них – правильный выбор очерёдности взятия пеленгов. Первым можно пеленговать объекты, расположенные ближе к диаметральной плоскости судна. Пеленги этих ориентиров изменяются медленнее. Если берутся пеленги огней маяков, то наблюдение надо так организовывать, чтобы не пришлось долго ждать проблеска огня, если он пеленгуется не первым. При скорости до 15 уз, когда прокладка ведётся на путевых картах, этого достаточно для исключения ошибки от неодновременного пеленгования. При больших скоростях или при ведении прокладки на крупномасштабных картах или планах для уточнения следует привести пеленга к среднему моменту. Для этого берут пять пеленгов в следующем порядке, пеленгуют ориентиры A, B и C, а затем ещё повторно пеленги В и А в обратном порядке. Считая, что пеленги изменяются линейно, рассчитывают среднее значение пеленгов объектов А и В.

, .

Определение места судна по пеленгу и расстоянию.

Этот способ наиболее часто употребляется при использовании радиолокатора. Обычно пеленг и расстояние измеряют до одного ориентира, однако бывает целесообразнее измерить пеленг на светящийся маяк по компасу, а расстояние измерить до берега. В первом случае угол пересечения линий положения будет равен 90о, а во втором – разности пеленгов, снятых с карты.

Чтобы уменьшить ошибки неодновременности наблюдений, вначале измеряются расстояния, а затем берётся пеленг при положении предмета ближе к траверзу и в обратной последовательности – при острых углах. Обсервованное место получается на линии ИП на расстоянии от предмета, равном Д.

При измерении пеленга и расстояния до одного ориентира средняя квадратическая погрешность места судна равна (угол )

При измерении пеленга и расстояния до разных объектов требуется знать угол пересечения, тогда:

Оценка точности места судна производится с помощью эллиптической и круговой (радиальной) погрешностей.

Эллиптическая погрешность- это эллипс соответствующих размеров и ориентировки с центром в месте судна, в пределах которого с заданной вероятностью находится истинное место судна.

Средний квадратический эллипс погрешностей – это эллипс с полуосями a и b, равными средней квадратической погрешности каждой линии положения, в этом случае вероятность нахождения судна в нем равна 0,393.

Предельный эллипс погрешностей – эллипс, в пределах которого судно находится с вероятностью равной или более 0,95, при этом полуоси эллипса равны 2,5 средней квадратической погрешности каждой линии положения.

Средний квадратический эллипс погрешностей строится следующим образом: от полученного места судна производится параллельное смещение с линий положения в одну и другую сторону на величину и , как показано на рис. В образовавшийся параллелограмм вписывается эллипс.

Радиальная (круговая) погрешность места – круг с центром в полученном месте судна с радиусом R, равным , где a и b – полуоси эллипса погрешностей.

СКП (средняя квадратическая погрешность) места судна, это радиальная погрешность с радиусом, полученным по полуосям среднего квадратического эллипса.

Веоятность нахождения судна в таком круге в зависимости от сжатия эллипса равна от 0,63 до 0,68.

Для получения 95% вероятности нахождения судна в круге необходимо радиус R средней квадратической погрешности умножить на 2, и таким радиусом построить круг.

Для предотвращения навигационных аварий, связанных с посадкой на мель, наряду с другими мероприятиями предпринимались попытки нормировать требования к точности и частоте обсервации в зависимости от условий плавания. Неоднократное обсуждение этих вопросов в комитете по безопасности мореплавания Международной морской организации (ИМО) привело к созданию стандарта точности судовождения, принятому в 1983 г. на 13-й Ассамблее ИМО в резолюции А.529.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]