Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
FIZIKA_33 (2).doc
Скачиваний:
1
Добавлен:
01.07.2025
Размер:
5.44 Mб
Скачать

Вопрос 134

Структура энергетических уровней сложных молекул. Молекулярные спектры.

В многоатомных молекулах можно выделить три вида движений: электронное, колебательное и вращательное. Первое связано с движением электронов вокруг ядер атомов, второе — с периодическим изменением расстояний между ядрами, третье — с периодическим изменением ориентации молекул в пространстве. В соответствии с видами движений энергия молекулы приблизительно может быть представлена в виде суммы энергий электронной, колебательной и вращательной:

E=Eэл+Eкол+Eвр

МОЛЕКУЛЯРНЫЕ СПЕКТРЫ - спектры поглощения, испускания или рассеяния, возникающие при квантовых переходах молекул из одного энергетич. состояния в другое. M. с. определяются составом молекулы, её структурой, характером хим. связи и взаимодействием с внеш. полями (и, следовательно, с окружающими её атомами и молекулами). Наиб. характерными получаются M. с. разреженных молекулярных газов, когда отсутствует уширение спектральных линий давлением: такой спектр состоит из узких линий с доплеровской шириной.

Вопрос 135

Эмиссионный и абсорбционный спектральный анализ, его медицинс­кое применение.

    1. Эмиссионный и абсорбционный спектральный анализ, его медицинское применение.

Спектры поглощения и испускания вещества являются источником информации о качественном составе (из каких молекул или атомов состоит вещество), количественном соотношении различных компонентов вещества, их состоянии и структурной организации.

В спектральном анализе используют как спектры испускания (эмиссионный спектральный анализ), так и спектры поглощения (абсорбционный спектральный анализ).

В зависимости от энергии (частоты) фотона, испускаемого или поглощаемого атомом (или молекулой), классифицируют следующие виды спектроскопии: радио-, ИК-, УФ-, видимого излучения, рентгеновская.

По типу вещества источника спектра различают атомные, молекулярные спектры и спектры кристаллов.

В медицинских целях эмиссионный анализ служит в основном для определения микроэлементов в тканях организма, небольшого количества атомов металлов в консервированных продуктах с гигиенической целью, некоторых элементов в трупных тканях для целей судебной медицины и так далее.

Абсорбционные спектры широко используются в современных биохимических и биофизических работах.

Различают качественный (определение состава вещества) и количественный (определение концентраций соединений, входящих в данное вещество) спектральный анализ.

Вопрос 136

Спектроскопы, спектрографы, монохроматоры, спектро­фотометры и их применение в медицине.

Спектральные приборы служат для разложения по частотам (или по длинам волн) электромагнитного излучения оптического диапазона.

Любой спектральный прибор имеет входной коллиматор, диспергирующий элемент и выходной коллиматор (регистрирующую камеру).

Спектральные приборы различаются по способу регистрации спектра (визуальные, фотографические, фотоэлектрические), по способу спектрального разложения излучения (призменные, дифракционные, интерференционные), по области спектра, в которой они применяются (для инфракрасной, видимой, ультрафиолетовой областей), по назначению (для эмиссионного анализа, исследования комбинационного рассеяния и др.). Конструкция и оптическая схема прибора определяются совокупностью всех перечисленных признаков, но в наибольшей степени первым из них, по которому прибор и получает название.

Приборы для визуального наблюдения спектров называются спектроскопами. Они используются в видимой (380-760 нм) области в соответствии со спектральной чувствительностью глаза. Приборы с фотографической регистрацией спектров – спектрографы – применяются в видимой и ультрафиолетовой областях в соответствии с чувствительностью фотоматериалов. Приборы с фотоэлектрическими и тепловыми приемниками излучения, называемые спектрометрами или спектрофотометрами, позволяют анализировать излучение от ультрафиолетовой до далекой инфракрасной области.

Основные характеристики спектральных приборов – угловая и линейная дисперсии, разрешающая способность (или разрешающая сила) и дисперсионная область.

Дисперсия.

Угловой дисперсией прибора называется величина

Dугл = d/d,

где d - угол между лучами с длинами волн  и  + d. Дисперсия характеризует степень изменения угла отклонения светового пучка, выходящего из прибора, при изменении длины волны.

В спектральных приборах в качестве дисперсионных элементов часто используются или дифракционные решетки или призмы. В зависимости от требуемой спектральной области применяют призмы из следующих материалов: для ультрафиолетовой области – из кварца, для видимой области – из стекла, для инфракрасной области – из NaCl, LiF, KBr.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]