Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
FIZIKA_33 (2).doc
Скачиваний:
1
Добавлен:
01.07.2025
Размер:
5.44 Mб
Скачать

Вопрос 7

Резонанс. Автоколебания.

Резона́нс— явление резкого возрастания амплитуды вынужденных колебаний, которое наступает при совпадении частоты собственных колебаний с частотой колебаний вынуждающей силы. 

Явление резонанса впервые было описано Галилео Галилеем в 1602 г. в работах, посвященных исследованию маятников и музыкальных струн.

Резонанс — один из важнейших физических процессов, используемых при проектировании звуковых устройств, большинство из которых содержат резонаторы, например, струны и корпус скрипки, трубка у флейты, корпус у барабанов.

Незатухающие колебания, существующие в какой-либо сис­теме с затуханием при отсутствии переменного внешнего воз­действия, называются автоколебаниями, а сами системы автоколебательными.

Амплитуда и частота автоколебаний зависят от свойств самой автоколебательной системы, в отличие от вынужденных колеба­ний они не определяются внешними воздействиями.

Во многих случаях автоколебательные системы можно пред­ставить тремя основными элементами: 1) собственно колебатель­ная система; 2) источник энергии; 3) регулятор поступления энер­гии в собственно колебательную систему. Колебательная система каналом обратной связи (рис. 5.19) воздействует на регулятор, информируя регулятор о состоянии этой системы.

Группа 16

Классическим примером механической автоколебательной сис­темы являются часы, в которых маятник или баланс являются ко­лебательной системой, пружина или поднятая гиря — источником энергии, а анкер — регулятором поступления энергии от источни­ка в колебательную систему.

Вопрос 8

Энергия гармонических колебаний

При гармонических колебаниях любых физических систем непрерывно и периодически происходит превращение кинетической энергии в потенциальную и обратно.

Например, при колебаниях физического или математического маятников в крайних положениях потенциальная энергия максимальна, а при прохождении положения равновесия максимальна кинетическая энергия.

 Кинетическая энергия

 Кинетическая энергия физической системы, совершающей гармонические колебания,  , где скорость v изменяется по гармоническому закону,

v =  A sin(t + o).

Кинетическая энергия физической системы также совершает гармонические колебания с круговой частотой 2, а величина ее периодически изменяется от 0  до m2A2/2.

Потенциальная энергия

 

В связи с тем, что любая физическая система, совершающая гармонические колебания, имеет общий вид дифференциального уравнения, то на такую систему действует квазиупругая. Поэтому потенциальную энергию колеблющейся системы найдем по формуле потенциальной энергии упруго деформированной пружины:

.

Потенциальная энергия физической системы периодически изменяется от 0 до m2A2/2 и совершает гармонические колебания с круговой частотой 2.

Вопрос 9

Разложение колебаний в гармонический спектр

сложение колебаний приводит к более сложным формам колебаний. Для практических целей бывает не­обходимой противоположная операция: разложение сложного ко­лебания на простые, обычно гармонические, колебания.

Ж.. Фурье показал, что периодическая функция любой сложнос­ти может быть представлена в виде суммы гармонических функций, частоты которых кратны частоте сложной периодической функции.

Такое разложение периодической функции на гармонические составляющие и, следовательно, разложение различных периоди­ческих процессов (механические, электрические и т. п.) на гармо­нические колебания называется гармоническим анализом. Су­ществуют математические выражения, которые позволяют найти составляющие гармонические функции. Автоматически гармони­ческий анализ колебаний, в том числе и для целей медицины, осуществляется специальными приборами — анализаторами.

Совокупность гармонических колебаний, на которые разложе­но сложное колебание, называется гармоническим спектром сложного колебания.

Гармонический спектр удобно представить как набор частот (или круговых частот) отдельных гармоник совместно с соответст­вующими им амплитудами. Наиболее наглядно такое представле­ние выполняется графически. В качестве примера на рис. 5.16, а изображены графики сложного колебания (кривая 4) и составляю­щих его гармонических колебаний (кривые /, 2 и 3); на рис. 5.16, б показан гармонический спектр, соответствующий этому примеру.

Гармонический анализ позволяет достаточно детально описать и проанализировать любой сложный колебательный процесс, он находит применение в акустике, радиотехнике, электронике и других областях науки и техники.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]