- •Вопрос 1
- •Вопрос 2
- •Вопрос 3
- •Вопрос 4
- •Вопрос 5
- •Вопрос 6
- •Вопрос 7
- •Вопрос 8
- •Вопрос 9
- •Вопрос 10
- •Вопрос 11
- •Вопрос 12
- •Вопрос 13
- •Вопрос 14
- •Вопрос 15
- •Вопрос 16 Характеристики слухового ощущения и их связь с физическими характеристиками звука.
- •Вопрос 17
- •Вопрос 18
- •Вопрос 19
- •Вопрос 20
- •Вопрос 21
- •Вопрос 22
- •Вопрос 23
- •Вопрос 24
- •Вопрос 25
- •Вопрос 26
- •Вопрос 27
- •Вопрос 28
- •Вопрос 29
- •Вопрос 30
- •Вопрос 31
- •Вопрос 32
- •Вопрос 33
- •Вопрос 34
- •Вопрос 35
- •Вопрос 36
- •Вопрос 37
- •Вопрос 38
- •Вопрос 39
- •Вопрос 40
- •Вопрос 41
- •Вопрос 43
- •Вопрос 44
- •Инвазивный (прямой) метод измерения артериального давления.
- •Вопрос 45 Физические принципы определения давления и скорости движения крови
- •Вопрос 46
- •Вопрос 47 Условия проявления турбулентности в системе кровообращения.
- •Вопрос 49 Пульсовая волна. Скорость распространения пульсовой волны.
- •Вопрос 50
- •Вопрос 51
- •Метод падающего шарика (метод Стокса).
- •Вопрос 52
- •Вопрос 53
- •Вопрос 54
- •Вопрос 55
- •Вопрос 56
- •Вопрос 57
- •Вопрос 58
- •Вопрос 59
- •Вопрос 60
- •Вопрос 61
- •Вопрос 62
- •Вопрос 66
- •Вопрос 67
- •Вопрос 68
- •Классификация усилителей электрических сигналов.
- •Вопрос 69 Амплитудная характеристика усилителя. Амплитудные искажения. Предупреждение амплитудных искажений.
- •Вопрос 70 Частотная характеристика усилителя. Частотные искажения. Полоса пропускания усилителя. Предупреждение частотных искажений.
- •Вопрос 71
- •Вопрос 72 Повторители. Назначение и типы повторителей.
- •Вопрос 74
- •Вопрос 75
- •Вопрос 76
- •Вопрос 77
- •Вопрос 78
- •Вопрос 80
- •Вопрос 82
- •Вопрос 83
- •Вопрос 84
- •Вопрос 85
- •Вопрос 86
- •Индуктивное сопротивление. Формула индуктивного сопротивления.
- •Емкостное сопротивление. Формула емкостного сопротивления.
- •Суммарное сопротивление. Формулы суммарного сопротивления.
- •Вопрос 87
- •Вопрос 88
- •Вопрос 89
- •Вопрос 90
- •Вопрос 91
- •Вопрос 92
- •Вопрос 93
- •Вопрос 94
- •Вопрос 95
- •Вопрос 96
- •Вопрос 97
- •Вопрос 98
- •Вопрос 99
- •Вопрос 100
- •Вопрос 101
- •Вопрос 102
- •Вопрос 103
- •Вопрос 105
- •Вопрос 106
- •Вопрос 107
- •Вопрос 108
- •Вопрос 109
- •Вопрос 110
- •Вопрос 111
- •Вопрос 113
- •Вопрос 114
- •Вопрос 115
- •Вопрос 116
- •Вопрос 117
- •Вопрос 118
- •Вопрос 120
- •Вопрос 121
- •Вопрос 122
- •Вопрос 123
- •Вопрос 124
- •Вопрос 125
- •Вопрос 126
- •Вопрос 127
- •Закон Малюса
- •Вопрос 128
- •Вопрос 129
- •Вопрос 130
- •Вопрос 131
- •Вопрос 132
- •Вопрос 133
- •Вопрос 134
- •Вопрос 135
- •Эмиссионный и абсорбционный спектральный анализ, его медицинское применение.
- •Вопрос 136
- •Вопрос 137
- •Вопрос 138
- •Вопрос 139
- •Вопрос 140
- •Вопрос 141
- •Вопрос 142
- •Вопрос 143
- •Вопрос 144
- •Вопрос 145
- •Вопрос 147
- •Вопрос 148
- •Особенности лазерного излучения
- •Вопрос 149
- •Вопрос 151
- •Вопрос 152
Вопрос 89
Эквивалентная электрическая схема живой ткани. Электрические фильтры.
Эквивалентная электрическая схема живой ткани – это условная модель,
приближенно характеризующая живую ткань, как проводник переменного тока.
Схема позволяет судить:
1.Какими электрическими элементами обладает ткань
2.Как соединены эти элементы.
3.Как будут меняться свойства ткани при изменении частоты тока.
Электрическим фильтром называется четырехполюсник, устанавливаемый между источником питания и нагрузкой и служащий для беспрепятственного (с малым затуханием) пропускания токов одних частот и задержки (или пропускания с большим затуханием) токов других частот.
Диапазон частот, пропускаемых фильтром без затухания (с малым затуханием), называется полосой пропускания или полосой прозрачности; диапазон частот, пропускаемых с большим затуханием, называется полосой затухания или полосой задерживания. Качество фильтра считается тем выше, чем ярче выражены его фильтрующие свойства, т.е. чем сильнее возрастает затухание в полосе задерживания.
Вопрос 90
Основные характеристики магнитного поля
При прохождении электрического тока по проводнику вокруг него образуется магнитное поле. Магнитное поле представляет собой один из видов материи. Оно обладает энергией, которая проявляет себя в виде электромагнитных сил, действующих на отдельные движущиеся электрические заряды (электроны и ионы) и на их потоки, т. е. электрический ток.
Магнитное поле образуется только вокруг движущихся электрических зарядов, и его действие распространяется тоже лишь на движущиеся заряды. Магнитное и электрические поля неразрывны и образуют совместно единое электромагнитное поле. Всякое изменение электрического поля приводит к появлению магнитного поля и, наоборот, всякое изменение магнитного поля сопровождается возникновением электрического поля.
Основными характеристиками магнитного поля являются магнитная индукция, магнитный поток, магнитная проницаемость и напряженность магнитного поля.
Интенсивность магнитного поля, т.е. способность его производить работу, определяется величиной, называемой магнитной индукцией.
Магнитным потоком называют поток вектора магнитной индукции В через некую поверхность.
Магнитная
проницаемость — физическая
величина,
коэффициент (зависящий от свойств
среды), характеризующий связь
между магнитной
индукцией
инапряжённостью
магнитного поля
в
веществе.
Напряжённость магни́тного по́ля (стандартное обозначение Н) — векторная физическая величина, равная разности вектора магнитной индукции B и вектора намагниченности M.
Вопрос 91
Магнитные свойства веществ. Магнитные свойства биологической ткани.
Магнетизм биологических объектов, т. е. их магнитные свойства и магнитные поля, создаваемые ими, получили название биомагнетизма.
Магнитные поля, создаваемые биологическими объектами, достаточно слабы и возникают от биотоков. В некоторых случаях магнитную индукцию таких полей удается измерить. Так, например, на основании регистрации временной зависимости индукции магнитного поля сердца (биотоков сердца) создан диагностический метод — магнитокардиография.
Диамагнетики это такие вещества, у которых магнитная восприимчивость отрицательна и при этом она не зависит от напряжённости магнитного поля.
У парамагнетиков также магнитная восприимчивость не зависит от напряжённости поля, но при этом она положительна.
Ферромагнетики обладают высокой положительной магнитной восприимчивостью.
Магнитные свойства вещества определяют по тому, как эти вещества реагируют на внешнее магнитное поле и каким образом упорядочена их внутренняя структура. Исходя из этих параметров, все вещества можно разделить на такие группы. Парамагнетики диамагнетики антиферромагнетики ферромагнетики и ферримагнетики.
