- •1. Первичные опасные факторы пожара.
- •2. Формула для определения скорости газа, физический смысл, величины с нее входящие.
- •3. Модификация базовой интегральной модели для определения офп по зонам
- •4. Какие здания относятся к классам ф1.1, ф1.2 функциональной пожарной опасности?
- •5. Какие этапы должны предусматриваться при оценке пожарного риска объекта защиты?
- •1. Понятие дыма и его характеристики.
- •2. Раскрыть особенности режимов работы проемов.
- •3. Область практического применения зонных моделей пожаров.
- •4. Дайте определение и единицу измерения параметра .
- •5. Какие данные о здании (объекте защиты) необходимы для проведения анализа его пожарной опасности?
- •1. Цели прогнозирования офп.
- •2. Раскрыть особенности режимов работы проемов.
- •3. Допущения и начальные условия для интегральной математической модели начальной стадии пожара.
- •4. Дифференциальное уравнение, описывающее процесс изменения концентрации токсичных продуктов горения в помещении.
- •5. В чем заключается оценка последствий воздействия офп на людей?
- •1. Параметры состояния газовой среды в помещении.
- •2. Критическая продолжительность пожара, по условию достижения предельно допустимых значений концентраций токсичных газов (продуктов горения) в помещении.
- •3. Проемность, определение и величины ее описывающие.
- •3. Какие здания относятся к классам ф2.1, ф2.2 функциональной пожарной опасности?
- •5. Дайте определение и единицу измерения параметра Qп
- •3. Какие здания относятся к классам ф1.3, ф1.4 функциональной пожарной опасности?
- •4. Дайте определение понятию риска и в чем заключается физический смысл основных расчетных показателей пожарного риска.
- •5. Какими параметрами определяется частота реализации пожароопасных ситуаций?
- •1. Повышенная температура как офп.
- •3. Допущения и начальные условия для интегральной математической модели начальной стадии пожара.
- •3.Среднеобъемная температура газовой среды как офп.
- •4.Что необходимо предусматривать, если расчетная величина индивидуального пожарного риска превышает нормативное значение?
- •5.Какие здания относятся к классам ф 2.3, ф 2.4 функциональной пожарной опасности?
- •1. Токсичные продукты горения, понятия и физические величины.
- •2. Дифференциальное уравнение, описывающее процесс снижения парциальной плотности кислорода в помещении в начальной стадии пожара.
- •3. Начальные условия при постановки задачи о динамике офп в начальной стадии.
- •4. Какие действия проводятся для построения полей офп?
- •5. Какие противопожарные мероприятия направлены на обеспечение безопасной эвакуации людей при пожаре?
- •1. Понятие и физические величины пламени.
- •2. Дайте определение и единицу измерения параметра Rап
- •3. Какие здания относятся к классам ф3.1, ф3.2 функциональной пожарной опасности?
- •4. Какие этапы входят в формулировку сценария развития пожара?
- •5. Степенью влияния каких параметров определяется эффективность противопожарных мероприятий?
- •1. Сущность и проявление вторичных офп.
- •2. Дифференциальное уравнение, описывающее процесс изменения критической плотности дыма в помещении.
- •3. Допущения и начальные условия для интегральной математической модели начальной стадии пожара.
- •4. Дайте определение и единицу измерения параметру Рпр
- •1. Токсичные продукты горения, как офп.
- •2. Критическая продолжительность пожара, определение, применение для обеспечения пожарной безопасности.
- •3. Дифференциальное уравнение, описывающее процесс снижения парциальной плотности кислорода в помещении начальной стадии пожара.
- •4. Помещения с малой проемностью.
- •5. Какие дополнительные противопожарные мероприятия предусматриваются при несоответствии величины индивидуального пожарного риска нормативному значению?
- •1. Раскройте сущность динамики офп.
- •2. Критическая продолжительность пожара по условию достижения концентрации токсичных газов (продуктов горения) в помещении предельно допустимых значений.
- •3. Дифференциальное уравнение, описывающее процесс изменения концентрации токсичных продуктов горения в помещении.
- •4. Какие методы математического моделирования применяются при прогнозировании офп? в чем их сущность?
- •5. Дайте определение и единицу измерения параметра Рп.З
- •1.Предельно допустимые значения офп, физический смысл.
- •2. Дифференциальное уравнение, описывающее процесс изменения среднеобъемной температуры в помещении при пожаре в начальной стадии пожара.
- •3. Критическая продолжительность пожара, по условию достижения температурой в помещении предельно допустимого значения.
- •4. Модификация базовой математической модели для учета влияния объемного газового тушения.
- •5. Какой параметр выражает степень влияния дополнительного противопожарного мероприятия?
- •1. Среднеобъемная оптическая плотность дыма, определение, формула.
- •4. Какие здания относятся к классам ф4.1, ф4.2 функциональной пожарной опасности?
- •5. В чем заключается определение расчетных величин пожарного риска?
- •1.Понятие и физические величины пламени.
- •2. Критическая продолжительность пожара по условиям достижения температурой в помещении предельно допустимого значения.
- •3. Дифференциальное уравнение, описывающее процесс изменения концентрации токсичных продуктов горения в помещении.
- •4. Дайте определение и единицу измерения параметра tр
- •5. Чем определяется частота реализации пожароопасных ситуаций?
- •1.Пониженная концентрация кислорода, как опасный фактор пожара.
- •2. Коэффициент теплопотерь, определение, способы применения.
- •3. Дифференциальное уравнение, описывающее процесс изменения критической плотности дыма в помещении..
- •4. Какие здания относятся к классам ф4.3, ф4.4 функциональной пожарной опасности?
- •5. Каким путем проводятся расчеты по оценке пожарного риска?
- •1.Оптическое количество дыма, определение, формула.
- •2.Значения вводимых параметров а, в и n.
- •3. Критическая продолжительность пожара, определение, применение для обеспечения пожарной безопасности.
- •4. Что является численным выражением индивидуального пожарного риска?
- •5. Дайте определение и единицу измерения параметра tнэ
- •1.Раскройте сущность динамики офп
- •2. Начальные условия при постановке задачи о динамики офп начальной стадии.
- •3. Дифференциальное уравнение, описывающее процесс изменения парциальной плотности токсичных продуктов горения в помещении.
- •5. Определение потоков массы из конвективной колонки в припотолочный слой на основе теории свободной турбулентной конвективной струи.
- •2. Критическая продолжительность пожара по условию достижения предельно допустимого значения температуры в помещении.
- •3. Дополнительное уравнение баланса, учитывающее влияние объемного тушения газом.
- •4. Что проводится для построения полей офп?
- •5. Дайте определение и единицу измерения параметра Рэ
- •1. Уравнение энергии внутреннего пожара.
- •2. Значения вводимых параметров а, в и n.
- •3. Коэффициент теплопотерь, определение, способы применения.
- •5. Определение потоков энергии из конвективной колонки в припотолочный слой на основе теории свободной турбулентной конвективной струи.
- •1. Понятие и физические величины пламени.
- •2. Область практического применения зонных моделей пожаров.
- •3. Какие основания для определения расчетных величин пожарного риска?
- •4. Критическая продолжительность пожара по условию достижения предельно допустимого значения температуры в помещении.
- •5. Модификация базовой математической модели для учета влияния объемного газового тушения.
- •1. Перепад давлений.
- •2. Определение потоков массы из конвективной колонки в припотолочный слой на основе теории свободной турбулентной конвективной струи.
- •3. Какие предпосылки положены в основу выбора конкретной модели расчета времени блокирования путей эвакуации?
3. Дифференциальное уравнение, описывающее процесс снижения парциальной плотности кислорода в помещении начальной стадии пожара.
Теперь перейдем к рассмотрению дифференциального уравнения (4.36), описывающего процесс снижения парциальной плотности кислорода в помещении.
Разделим переменные и далее проинтегрируем правую и левую части полученного уравнения с разделяющимися переменными, учитывая при этом ранее указанные начальные условия:
(4.53) где ρ01 - начальное
значение плотности кислорода в помещении;
в ГОСТ 12.1.004-91 принимается, что ρ0
= 0,27 кг·м-3, а отношение
= 0,23.
После интегрирования правой и левой
частей уравнения (4.53) с учетом формулы
(4.49) получается выражение:
(4.54)
Потенцируя выражение (4.58), получим формулу, описывающую зависимость парциальной плотности токсичного газа от времени:
(4.55)
Эту формулу можно преобразовать:
(4.56)
4. Помещения с малой проемностью.
В начальной стадии пожара, возникающего в помещении с малой проемностью, наблюдается специфический режим газообмена. Особенности этого режима заключаются в том, что процесс газообмена идет в одном направлении через все имеющиеся проемы и щели. Поступление воздуха в помещение из окружающей среды в этот период развития пожара совсем отсутствует. Лишь спустя некоторое время, когда средняя температура среды в помещении достигает определенного значения. Процесс газообмена становится двусторонним, т.е. через одни проемы из помещения вытекают нагретые газы, а через другие поступает свежий воздух. Продолжительность начальной стадии пожара, при которой наблюдается «односторонний» газообмен, зависит от размеров проемов. В этом параграфе исследуется динамика ОФП в начальной стадии пожара при условиях, когда отсутствует поступление воздуха извне. Это означает, что в дифференциальных уравнениях пожара (1.34) – (1.38) можно отбросить члены, содержащие расход воздуха так как GB =0
Кроме того, будем рассматривать негерметичные помещения, в которых среднее давление среды остается практически постоянным, равным давлению наружного воздуха, так что с достаточной точностью можно принять, что: (4.24) где 0 , Т0 – плотность и температура среды перед началом пожара; m, Тm – соответственно средние значения плотности и температуры среды в рассматриваемый момент времени; Рm – среднее давление в помещении.
Интервал времени, в течении которого наблюдается односторонний газообмен, является относительно небольшим. Средняя температура и концентрация кислорода в помещении изменяются за этот промежуток времени незначительно. По этой причине можно принять, что величины , D, R в этой стадии пожара остаются неизменными. Кроме того, примем, что n1 = n2 = n3 = m = 1 и V = const.
С учетом сказанного, уравнения пожара для начальной его стадии в помещении с малой проемностью, принимают следующий вид:
В дальнейшем принимается еще одно допущение, а именно:
сР = сРВ = const (4.30)
Для того чтобы получить аналитическое решение этих уравнений, используется прием, заключающийся в следующем. Поскольку рассматривается процесс развития пожара на относительно малом промежутке времени, то можно принять, что отношение теплового потока в ограждении к тепловыделению есть величина постоянная, равна своему среднему значению на этом интервале:
(4.31) где Qпож = QH ; ٭ - время окончания начальной стадии пожара.
Величину принято называть «коэффициентом теплопотерь» (ГОСТ 12.1004-91). В дальнейшем подробно рассмотрим метод вычисления этого коэффициента для различных схем распространения пламени по горючим материалам.
