- •1. Первичные опасные факторы пожара.
- •2. Формула для определения скорости газа, физический смысл, величины с нее входящие.
- •3. Модификация базовой интегральной модели для определения офп по зонам
- •4. Какие здания относятся к классам ф1.1, ф1.2 функциональной пожарной опасности?
- •5. Какие этапы должны предусматриваться при оценке пожарного риска объекта защиты?
- •1. Понятие дыма и его характеристики.
- •2. Раскрыть особенности режимов работы проемов.
- •3. Область практического применения зонных моделей пожаров.
- •4. Дайте определение и единицу измерения параметра .
- •5. Какие данные о здании (объекте защиты) необходимы для проведения анализа его пожарной опасности?
- •1. Цели прогнозирования офп.
- •2. Раскрыть особенности режимов работы проемов.
- •3. Допущения и начальные условия для интегральной математической модели начальной стадии пожара.
- •4. Дифференциальное уравнение, описывающее процесс изменения концентрации токсичных продуктов горения в помещении.
- •5. В чем заключается оценка последствий воздействия офп на людей?
- •1. Параметры состояния газовой среды в помещении.
- •2. Критическая продолжительность пожара, по условию достижения предельно допустимых значений концентраций токсичных газов (продуктов горения) в помещении.
- •3. Проемность, определение и величины ее описывающие.
- •3. Какие здания относятся к классам ф2.1, ф2.2 функциональной пожарной опасности?
- •5. Дайте определение и единицу измерения параметра Qп
- •3. Какие здания относятся к классам ф1.3, ф1.4 функциональной пожарной опасности?
- •4. Дайте определение понятию риска и в чем заключается физический смысл основных расчетных показателей пожарного риска.
- •5. Какими параметрами определяется частота реализации пожароопасных ситуаций?
- •1. Повышенная температура как офп.
- •3. Допущения и начальные условия для интегральной математической модели начальной стадии пожара.
- •3.Среднеобъемная температура газовой среды как офп.
- •4.Что необходимо предусматривать, если расчетная величина индивидуального пожарного риска превышает нормативное значение?
- •5.Какие здания относятся к классам ф 2.3, ф 2.4 функциональной пожарной опасности?
- •1. Токсичные продукты горения, понятия и физические величины.
- •2. Дифференциальное уравнение, описывающее процесс снижения парциальной плотности кислорода в помещении в начальной стадии пожара.
- •3. Начальные условия при постановки задачи о динамике офп в начальной стадии.
- •4. Какие действия проводятся для построения полей офп?
- •5. Какие противопожарные мероприятия направлены на обеспечение безопасной эвакуации людей при пожаре?
- •1. Понятие и физические величины пламени.
- •2. Дайте определение и единицу измерения параметра Rап
- •3. Какие здания относятся к классам ф3.1, ф3.2 функциональной пожарной опасности?
- •4. Какие этапы входят в формулировку сценария развития пожара?
- •5. Степенью влияния каких параметров определяется эффективность противопожарных мероприятий?
- •1. Сущность и проявление вторичных офп.
- •2. Дифференциальное уравнение, описывающее процесс изменения критической плотности дыма в помещении.
- •3. Допущения и начальные условия для интегральной математической модели начальной стадии пожара.
- •4. Дайте определение и единицу измерения параметру Рпр
- •1. Токсичные продукты горения, как офп.
- •2. Критическая продолжительность пожара, определение, применение для обеспечения пожарной безопасности.
- •3. Дифференциальное уравнение, описывающее процесс снижения парциальной плотности кислорода в помещении начальной стадии пожара.
- •4. Помещения с малой проемностью.
- •5. Какие дополнительные противопожарные мероприятия предусматриваются при несоответствии величины индивидуального пожарного риска нормативному значению?
- •1. Раскройте сущность динамики офп.
- •2. Критическая продолжительность пожара по условию достижения концентрации токсичных газов (продуктов горения) в помещении предельно допустимых значений.
- •3. Дифференциальное уравнение, описывающее процесс изменения концентрации токсичных продуктов горения в помещении.
- •4. Какие методы математического моделирования применяются при прогнозировании офп? в чем их сущность?
- •5. Дайте определение и единицу измерения параметра Рп.З
- •1.Предельно допустимые значения офп, физический смысл.
- •2. Дифференциальное уравнение, описывающее процесс изменения среднеобъемной температуры в помещении при пожаре в начальной стадии пожара.
- •3. Критическая продолжительность пожара, по условию достижения температурой в помещении предельно допустимого значения.
- •4. Модификация базовой математической модели для учета влияния объемного газового тушения.
- •5. Какой параметр выражает степень влияния дополнительного противопожарного мероприятия?
- •1. Среднеобъемная оптическая плотность дыма, определение, формула.
- •4. Какие здания относятся к классам ф4.1, ф4.2 функциональной пожарной опасности?
- •5. В чем заключается определение расчетных величин пожарного риска?
- •1.Понятие и физические величины пламени.
- •2. Критическая продолжительность пожара по условиям достижения температурой в помещении предельно допустимого значения.
- •3. Дифференциальное уравнение, описывающее процесс изменения концентрации токсичных продуктов горения в помещении.
- •4. Дайте определение и единицу измерения параметра tр
- •5. Чем определяется частота реализации пожароопасных ситуаций?
- •1.Пониженная концентрация кислорода, как опасный фактор пожара.
- •2. Коэффициент теплопотерь, определение, способы применения.
- •3. Дифференциальное уравнение, описывающее процесс изменения критической плотности дыма в помещении..
- •4. Какие здания относятся к классам ф4.3, ф4.4 функциональной пожарной опасности?
- •5. Каким путем проводятся расчеты по оценке пожарного риска?
- •1.Оптическое количество дыма, определение, формула.
- •2.Значения вводимых параметров а, в и n.
- •3. Критическая продолжительность пожара, определение, применение для обеспечения пожарной безопасности.
- •4. Что является численным выражением индивидуального пожарного риска?
- •5. Дайте определение и единицу измерения параметра tнэ
- •1.Раскройте сущность динамики офп
- •2. Начальные условия при постановке задачи о динамики офп начальной стадии.
- •3. Дифференциальное уравнение, описывающее процесс изменения парциальной плотности токсичных продуктов горения в помещении.
- •5. Определение потоков массы из конвективной колонки в припотолочный слой на основе теории свободной турбулентной конвективной струи.
- •2. Критическая продолжительность пожара по условию достижения предельно допустимого значения температуры в помещении.
- •3. Дополнительное уравнение баланса, учитывающее влияние объемного тушения газом.
- •4. Что проводится для построения полей офп?
- •5. Дайте определение и единицу измерения параметра Рэ
- •1. Уравнение энергии внутреннего пожара.
- •2. Значения вводимых параметров а, в и n.
- •3. Коэффициент теплопотерь, определение, способы применения.
- •5. Определение потоков энергии из конвективной колонки в припотолочный слой на основе теории свободной турбулентной конвективной струи.
- •1. Понятие и физические величины пламени.
- •2. Область практического применения зонных моделей пожаров.
- •3. Какие основания для определения расчетных величин пожарного риска?
- •4. Критическая продолжительность пожара по условию достижения предельно допустимого значения температуры в помещении.
- •5. Модификация базовой математической модели для учета влияния объемного газового тушения.
- •1. Перепад давлений.
- •2. Определение потоков массы из конвективной колонки в припотолочный слой на основе теории свободной турбулентной конвективной струи.
- •3. Какие предпосылки положены в основу выбора конкретной модели расчета времени блокирования путей эвакуации?
Билет 1
1. Первичные опасные факторы пожара.
Первичными опасными факторами, воздействующими на людей и материальные ценности (согласно ГОСТ 12.1.004-91), являются:
- пламя и искры;
- повышенная температура окружающей среды;
- токсичность продуктов горения и термического разложения;
- дым;
- пониженная концентрация кислорода.
2. Формула для определения скорости газа, физический смысл, величины с нее входящие.
Если проем целиком расположен выше ПРД,
то через все участки этого проема
происходит истечение газа из помещения.
Скорость газа зависит от перепада
давлений (уравнение Бернулли):
(3.16) разность давлений определим с
помощью уравнений
(3.3) и
(3.8).
Из этих уравнений следует:
(3.11)
где ∆р - перепад давлений в области у > у*
Pm – среднеобъемное давление газовой среды в помещении(Pm=ρm*Tm*R; R-удельная газ.пост. 296,8, Tm-среднеобъемная темпер газ среды, ρm-среднеоб плотность газ среды)
Pa- атм давление
ρa-плотность атм воздуха
h-половина высоты помещения
y – координата отсчитываем. от плоскости пола
3. Модификация базовой интегральной модели для определения офп по зонам
Зонные математические модели в основном используются для исследования динамики опасных факторов пожара в начальной стадии пожара.
Процесс развития пожара можно представить следующим образом. После воспламенения горючих веществ образующиеся газообразные продукты устремляются вверх, образуя над очагом горения конвективную струю. Достигнув потолка помещения, эта струя растекается, образуя припотолочный слой задымленного газа. В течение времени толщина этого слоя увеличивается.
В соответствии с вышесказанным в объеме помещения можно выделить три характерные зоны: конвективную колонку над очагом пожара, припотолочный слой нагретого газа и воздушную зону с практически неизменными параметрами состояния, равными своим начальным значениям.
Рис. 6.1. Схема трехзонной модели пожара:
I — зона конвективной струи (конвективная колонка);
II - зона припотолочного нагретого газа; III - зона холодного
воздуха; IV - зона наружного воздуха (наружная атмосфера)
ук - координата нижней границы припотолочного слоя, отсчитываемая от поверхности горения;
уДВ - высота дверного проема;
dэ - эквивалентный диаметр очага горения;
2h - высота помещения;
GK - поток газа, поступающего в припотолочный слой из конвективной колонки, кг•с-1;
GB - поток воздуха, поступающий в колонку из зоны III, кг•с-1;.
GГ - поток вытесняемого газа из помещения, кг•с-1; ψ - скорость выгорания, кг•с-1;
δ - расстояние от пола до поверхности горения, м.
В дальнейшем ограничимся рассмотрением первой фазы начальной стадии пожара. Под понятием "первая фаза начальной стадии пожара" подразумевается отрезок времени, в течение которого нижняя граница припотолочного слоя, непрерывно опускаясь, достигает верхнего края дверного проема. При первой фазе начальной стадии пожара нагретые газы лишь накапливаются в припотолочной зоне.
Уравнения материального баланса и
энергии для II зоны применительно к
первой фазе начальной стадии пожара:
(6.4)
(6.5)
где ρ2 - средняя плотность во II зоне; Т2 - средняя температура во II зоне; Qw2 - тепловой поток от припотолочного слоя газа в ограждения, кВт.
Параметры состояния Т2 и ρ2 связаны между собой следующим уравнением:
(6.6)
Уравнение (6.6) следует из условия равенства давлений во всех зонах.
Преобразуем уравнение энергии (6.5),
используя уравнение (6.6):
или
и окончательно
(6.7) средняя температура в припотолочном
слое газа:
(6.13)
Уравнение баланса для токсичного газа
(продукт горения) во II зоне имеет вид:
(6.14)
где ρn - парциальная плотность токсичного газа; L - количество (масса) токсичного газа, образующаяся при сгорании 1 кг горючего материала.
Уравнение дыма для припотолочного слоя
имеет вид:
Зонная модель представляет собой опять же частный случай интегральной модели для припотолочного слоя.
