Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
stroymat.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
2.34 Mб
Скачать

Вопрос 14.

Понятие о стеклообразном состоянии. Свойство строительного стекла

«Стеклом называются все аморфные тела, получаемые путем переохлаждения расплава независимо от химического состава и температурной области затвердения и обладающее в результате постепенного увеличения вязкости механическими свойствами твердых тел, причем процесс перехода из жидкого состояния в стеклообразное должен быть обратным».

С точки зрения современных понятий различают термины «стекло» и «стеклообразное состояние». Так, М.М. Шульц и О.В. Мазурин дают следующее определение «стеклообразного состояния»: «Вещество в стеклообразном состоянии (стеклообразным веществом) называется твердое некристаллическое вещество, образовавшееся в результате охлаждения жидкости со скоростью, достаточной для предотвращения кристаллизации во время охлаждения».

Стекло – материал, в основном состоящий из стеклообразного вещества. В составе стекла могут оказаться пузыри, мелкие кристаллики. В материале, в основном состоящем из стеклообразного вещества, может быть даже специально образовано очень большим числом мельчайших кристалликов, делающих материал непрозрачным или придающим ему ту или иную окраску. Такой материал называют «молочным» стеклом, окрашенным стеклом и т.д.

Физические свойства. Плотность – масса вещества в единице объема, кг/м3; d=M/V. Плотность зависит от химического состава. При повышении температуры от 20 до 1300оС плотность большинства стекол уменьшается на 6…12%, т.е. в среднем на каждые 100оС плотность уменьшается на 15 кг/м3.

Упругость – свойство материалов восстанавливать форму и объем после прекращения действия деформирующих сил. Коэффициент пропорциональности между напряжениями и деформациями называется модулем упругости. Упругость стекол в зависимости от их химического состава изменяется в пределах 48*103…12*104 МПа.

Механическая прочность характеризует свойство материалов сопротивляться разрушению при воздействии внешних нагрузок. Мерой прочности является предел прочности – максимальное напряжение, вызывающее разрушение материала под действием статической нагрузки или удара.

Твердость стекла зависит от химического состава. Стекла имеют различную твердость в пределах от 4000…10000 МПа. Наиболее твердыми являются кварцевое или малощелочное боросиликатное стекло (до 10…12% B2O3). С увеличением содержания щелочных оксидов твердость стекол снижается. Наиболее мягкие многосвинцовые стекла.

Хрупкость. В области низких температур (ниже tg – температуры стеклования) стекло наряду с алмазом и кварцем является идеально хрупким материалом, т.е. способно разрушаться под действием механических напряжений без заметной пластической деформации. Поскольку хрупкость четче всего проявляется при ударе, ее характеризуют прочностью на удар, которую определяют работой удара, отнесенной к единице объема разрушаемого образца, называемой удельной ударной вязкостью. Прочность стекла на удар зависит от многих факторов. Введение B2O3 (до 12%) повышает прочность на удар почти вдвое, введение MgO, Fe2O3, увеличение содержания SiO2 – на 5…20%. Для силикатных стекол ударная вязкость составляет 1,5…2 кН/м, что на 2порядка ниже, чем у металлов.

Теплоемкость стекол различного химического состава колеблется от 0,3 до 1,05 кДж/(кг*К). С повышением температуры до tg теплоемкость увеличивается незначительно, в интервале tg – tf быстро возрастает. С увеличением содержания PbO и BaO – уменьшается.

Теплопроводность характеризует способность вещества проводить тепло в градиентном температурном поле. Стекло малотеплопроводно. С повышением температуры теплопроводность увеличивается и при нагревании выше tg примерно удваивается.

Термическое расширение тел. Нагревание тела при постоянном объеме вызывает увеличение линейных размеров и объемов. Термическое расширение характеризуется объемным и линейным коэффициентами температурного расширения. Истинные значения определяют как дифференциальные величины, учитывающие приращение размеров тела при повышении температуры:

Оптические свойства. Пропускание, поглощение, преломление, рассеяние и отражение света является результатом взаимодействия электромагнитного излучения с веществом.

Луч «белого» света разлагается стеклом на спектр, что носит название «дисперсии» света. Показатель преломления и дисперсию относят в определенным длинам волн.

Стекла с определенными заданными коэффициентами преломления и дисперсий называется оптическими. Они  должны обладать особенно высокой прозрачностью.

Для строительного листового стекла (оконного, витринного) необходимо учитывать, что коэффициент светопропускания прямо зависит от отражающей способности поверхности стекла и от его поглощающей способности. Теоретически даже идеальное, непоглощающее свет стекло не может пропускать света более 92%, так как обе его поверхности отразят не менее 8% световых лучей.

Коэффициент отражения света от поверхности стекла может быть снижен (это просветление оптики) или увеличен путем нанесения тонкой пленки некоторых материалов, имеющих меньший коэффициент преломления, чем стекло.

Электрофизические свойства. Стекло относится к диэлектрикам, в которых проявляется преимущественно ионная проводимость. При температуре ниже 200оС объемная электропроводимость стекол незначительно: 10-11…10-12 Ом-1м-1, в связи с чем стеклянные изоляторы используются в высоковольтных линиях электропередач. С увеличением содержания щелочных оксидов электропроводность возрастает. Пленка SnO2 обусловливает поверхностную проводимость. Фосфорванадатные и халькогенидные стекла обладают полупроводниковой проводимостью           10-5Ом-1м-1. Важным свойством является диэлектрическая проницаемость, которая колеблется от 3,75 (кварцевое стекло) до 16,20 (свинцовое стекло).

Электрическая прочность стекла в однородном электрическом поле достигает высоких значений – 100…300 кВ/мм. В неоднородном электрическом поле с ростом температуры и увеличением толщины образца пробивное напряжение сильно снижается за счет теплового пробоя, вызванного диэлектрическими потерями.

Химическая стойкость стекол. По характеру действия на стекло реагенты можно разделить на две группы. К первой группе относятся вода, влажная атмосфера, растворы кислот (кроме фосфорной и плавиковой), нейтральные или кислые растворы солей, т.е. реагенты с рН ≤ 7; ко второй – реагенты с рН>7, т.е. растворы щелочей, карбонатов и т.п. По механизму воздействия сюда же относятся фосфорная и плавиковая кислоты.

Повышение температуры способствует разрушению стекла любым реагентом. С повышением температуры на каждые 10оС в области до 100 оС скорость растворения растет в 1,5…2 раза. В автоклавах в условиях повышенных температур и давлений удается полностью растворить большинство силикатных стекол.

Большое влияние на скорость химического разрушения стекол оказывает качество их отжига. Закаленные стекла разрушаются в 1,5…2 раза быстрее, чем стекла, хорошо отожженные.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]