- •Вопросы к экзамену (2015):
- •Вальпроаты (соли вальпроевой кислоты) – блокаторы гамк трансферазы
- •Синдром дефицита внимания и гиперактивности (сдвг):
- •Периферические эффекты 5-нт:
- •«Принимать наркотики – это как поливать материнскую плату компьютера пепси-колой: на экране такие интересные звёздочки…»
- •Поперечный разрез см.
- •Слуховая кора:
- •Промежуточный мозг: гипофиз и эпифиз (эндокринные железы); таламус, гипоталамус, субталамус
- •Амфетамины:
- •Опиум: из сока снотворного мака; обезболивающее, успокаивающее, снотворное
- •Амфетамины:
- •Базальные ганглии (двигательная часть):
Вопросы к экзамену (2015):
Сенсорные системы: кодировка количества и качества сигналов. Топический принцип (на примере кожной чувствительности), дивергенция, конвергенция, типы торможения.
1-2. Мотонейроны. Нервно-мышечные синапсы (НМС): строение и проведение сигнала; роль ацетилхолина; запуск мышечного сокращения; нарушения работы НМС.
Мотонейрон
Двигательный нейрон (мотонейрон): передает сигнал на клетки скелетных мышц, запуская их сокращение. Аксон мотонейрона образует синапс с поперечно-полосатыми клетками скелетных мышц.
Мотонейроны (МН), как известно, находятся в передних рогах серого вещества спинного мозга, а также в двигательных ядрах черепных нервов: III, IV, VI (глазодвигательный, блоковый, отводящий) движения глаз (6 мышц); V (тройничный) – жевательные мышцы; VII(лицевой) – мигание, мимические мышцы; IX (языкоглоточный) – мышцы глотки; Х (блуждающий) – мышцы пищевода и гортани; XI(добавочный) – часть мышц шеи и плечевого пояса; XII (подъязычный) – язык.
Один МН иннервирует разное число мышечных волокон в зависимости от «тонкости» движений (глазодвигательные мышцы, язык, мышцы пальцев – по 5-50 клеток; мышцы туловища – по 2-5 тыс. клеток; мышцы конечностей – по несколько сотен клеток.
Совокупность мышечных волокон, управляемых одним МН, называется «двигательной единицей». В ответ на приход ПД все клетки двигательной единицы сокращаются примерно на 200 мс.
Каждая мышечная клетка управляется только одним МН (только один нервно-мышечный синапс).
Синапс
Передача сигнала от клетки к клетке в нервной системе происходит в особых образованиях – синапсах. Представление о синапсе сформулировано Чарльзом Шеррингтоном (Ch. Sherrington) в 1897 г. на основе изучения нервно-мышечных контактов.
Нервно-мышечный синапс
Нервно-мышечные синапсы в десятки раз крупнее центральных; количество выделяемого Ацх так велико, что ВПСП достигает 50 мВ и «с гарантией» запускает ПД на мембране мышечной клетки. Постсинаптическая мембрана мышечной клетки складчатая, что увеличивает кол-во никотиновых рецепторов; от поверхности клетки внутрь цитоплазмы идут особые каналы – Т-трубочки.
1. Приход ПД приводит к экзоцитозу Ацх и активации никотиновых рецепторов.
2. На мембране мышечной клетки возникает ПД, распространяющийся внутрь Т-трубочек.
3. ПД приводит к выбросу из каналов ЭПС, контактирующих с Т-трубочкой, ионов Са2+.
4. Са2+ запускает взаимное скольжение нитей актина и миозина, приводящее к сокращению мышечной клетки.
Курарин – яд южно-американского кустарника; антагонист Ацх: мешает ему присоединяться к никотино-вому рецептору; основное действие курарин оказывает на нервно-мышечные синапсы (паралич, остановка дыхания). Используется аборигенами для охоты; в клинике – для выключения нервно-мышечных синапсов и сокращений мышц во время длительных хирургических операций (при этом пациента, естественно, подключают к аппарату искусственного дыхания).
Никотин при табакокурении практически не влияет на нервно-мышечные синапсы (иначе были бы судороги, как у насекомых, поедающих табак).
1-3. Гипоталамус и его связь с вегетативной нервной системой; участие в реакции на стресс и терморегуляции (терморецепторы, лихорадка, гибернация).
Промежуточный мозг: гипофиз; эпифиз (эндокринные железы);таламус, гипоталамус, субталамус
Гипоталамус – является главным центром эндокринной и вегетативной регуляции, а также главным центром биологических потребностей (и связанных с ними эмоций).
Здесь – центры голода и жажды, страха и агрессии, половой и родительской мотивации («центр бессознательного»).
Гипоталамус, представляющий собой вентральную часть промежуточного мозга, располагается кпереди ножек мозга. Он включает ряд структур, которые имеют различное строение: сосцевидные тела, серый бугор, зрительный перекрест.
Сосцевидные тела располагаются кпереди от заднего продырявленного вещества среднего мозга и образованы серым веществом, покрытым тонким слоем белого вещества. Между сосцевидными телами сзади и зрительным перекрестом спереди находится серый бугор, который по бокам ограничен зрительными трактами. Серый бугор представляет собой тонкую пластинку серого вещества на дне третьего желудочка, которая вытянута книзу и кпереди и образует воронку. Конец воронки переходит в гипофиз — железу внутренней секреции, расположенную в гипофизарнои ямке костного турецкого седла. Зрительный перекрест, находящийся впереди серого бугра, продолжается кпереди в зрительные нервы, кзади и латерально — в зрительные тракты, которые достигают правого и левого латеральных коленчатых тел. В сером веществе гипоталамуса располагаются скопления нервных клеток. Эти скопления получили название ядер. В передней области гипоталамуса находятся супраоптическое{надзрительное) и паравентрикулярное{околожелудочковое) ядра. В задней части гипоталамуса наиболее крупными ядрами являются медиальное и латеральное ядра в каждом сосцевидном теле, заднее гипоталамическое ядро. В сером бугре и околобугристой области располагаются серобугорные ядра, ядро воронки и другие. Ядра гипоталамуса имеют сложную систему связей с другими отделами мозга и с гипофизом, через которые гипоталамус влияет на многие вегетативные функции организма. Гипоталамус является также центром регуляции эндокринных функций, он объединяет нервные и эндокринные регуляторные механизмы в общую нейроэндокринную систему, координирует нервные и гормональные механизмы функций внутренних органов. В гипоталамусе имеются нейроны обычного типа и нейро-секреторные клетки, они трансформируют нервный импульс в нейрогормональный. Гипоталамус образует с гипофизом единый функциональный комплекс — гипоталамо-гипофизарную систему, в которой гипоталамус играет регулирующую роль, а в гипофизе — эффекторную. Таким образом, гипоталамус является связующим звеном между нервной системой и эндокринным аппаратом. В среднем гипоталамусе залегают нейроны, которые воспринимают все изменения, происходящие в крови и спинномозговой жидкости (температуру, солевой состав, наличие гормонов). Задняя область гипоталамуса функционально связана с терморегуляцией и оборонительным поведением (латеральные и медиальные ядра сосцевидных тел, заднее гипоталамическое ядро). В других частях гипоталамуса расположены центры, связанные с половым, родительским, пищевым и другими типами поведения. В нейронном отношении ядра гипоталамуса составляют переднюю (верхнюю) часть ретикулярной формации ствола мозга.
В гипоталамусе, являющемся высшим подкорковым центром вегетативной нервной системы, расположены ядра, обеспечивающие постоянство внутренней среды организма, регуляции белкового, углеводного, жирового и водно-солевого обмена, терморегуляции (теплового режима). В передних отделах гипоталамуса расположены парасимпатические центры, раздражение которых вызывает усиление моторики кишки, секреции желез органов пищеварения, замедление сокращений сердца. В задних отделах гипоталамуса находятся симпатические центры, при активации которых учащается и усиливается сердцебиение, суживаются кровеносные сосуды, повышается температура тела.
Ядра:
супрахиазменные («биологические часы»)
преоптические (терморецепторы).
п
аравентрикулярном
( р-ия деятельности эндокринной системы
)
супраоптическом ( р-ия деятельности эндокринной системы )
содержат нейроэндокринные клетки, аксоны которых идут в заднюю долю гипофиза и здесь выбрасывают гормоны в кровь.
Другие нейроны, расположенные в основном в средней части гипоталамуса («серый бугор») выделяют в сосудистое сплетение гормоны, регулирующие работу передней доли гипофиза.
Вегетативная нервная система управляет работой внутренних органов.
Подразделяется на симпатическую и парасимпатическу.
Высшие центры симпатики( иннервация гладкой мускулатуры ораганов, сердца, желез) расположены в задней части гипоталамуса; высшие центры парасимпатики расположены в ядрах переднего гипоталамуса (глакая мускулатура и железы ЖКТ, органы мочеполовой системы, легкие, сердце, железы)
Центры страха и агрессии:
реакция на реально или потенциально вредные (стрессогенные) стимулы; эти центры отвечают за «потребность в безопасности».
Примеры «вредных» стимулов: боль, сверхсильные раздражители (зрительные, звуковые, обонятельные), специфические раздражители (феромоны страха и агрессии, «образ врага» и т.п.).
Два варианта реагирования:
пассивно-оборонительный (уход от опасности, бегство, затаивание; страх и тревожность)
активно-оборонительный (нападение на источник опасности; агрессия, ярость).
Простейшие программы – уже на уровне спинного мозга (рефлекс отдергивания от источника боли), продолговатого мозга и моста (кашель, мигание). Задняя часть гипоталамуса вместе с миндалиной создают соответствующую мотивацию («готовность к запуску оборонительных поведенческих ответов»), обеспечивают вегетатив-ное сопровождение таких ответов.
Миндалина обеспечивает, в первую очередь, сбор и проведение стрессогенных сигналов; гипоталамус – вегетативную, эндокринную (выброс CRH, АКТГ) и эмоциональную составляющие реагирования.
The Paths of Fear (Пути страха);
аmygdala = миндалина.
High road: запуск вегетативного, эндокринного и эмоционального сопровождения оборонительных программ, являющихся результатом обучения (через сенсорную кору и гиппокамп).
Low road: то же для врожденно обусловленных программ (сразу через миндалину).
У животных – особые органы теплоотдачи (хвосты, уши, плавники), а также испарение с поверхности дыхательных путей.
Существуют пептиды-терморегу-ляторы (киоторфин: Tyr-Arg ); они же – важные факторы, запускающие зимнюю спячку (гибернацию). Замедление обмена веществ за счет снижения температуры тела – важная практическая задача (уменьшение риска осложнений при хирургических вмешательствах).
2-1. Сенсорные системы: общие принципы организации; первичо- и вторично-чувствующие рецепторы (на примере вкуса и обоняния). Рецепторный потенциал.
Изображенные на схеме нейроны относятся к периферической нервной системе и обычно располагаются в ганглиях соответствующих нервов.
2-2. Роль ацетилхолина (Ацх) в деятельности симпатической и парасимпатической систем; вегетативные эффекты соединений, изменяющих работу Ацх-синапсов.
По химическому строению ацетилхолин представляет собой соединение двух молекул — азотсодержащего холина и остатка уксусной кислоты: Холин является незаменимым витаминоподобным соединением, получаемым с пищей в достаточном количестве, и последствия его дефицита наблюдаются только в искусственных условиях. Синтез ацетилхолина осуществляется в основном в пресинаптических окончаниях с помощью фермента холина-цетилтрансферазы. Затем медиатор переносится в пустые везикулы и хранится в них до момента выброса.
ВНС – часть нервной системы, управляющая работой внутренних органов. Состоит из двух конкурирующих подсистем – симпатической и парасимпатической, каждая из которых включает центральные и периферические звенья.
Соответственно, из представленных на рисунке пяти синапсов в четырех идет экзоцитоз Ацх. При этом в трех случаях рецепторы никотиновые (в нервно-мышечном синапсе и ганглиях), в одном – мускариновые (парасимпатический на внутреннем органе).
Ацетилхолин в качестве медиатора работает в трех функциональных блоках нервной системы: в нервно-мышечных синапсах, периферической части вегетативной нервной системы и некоторых областях ЦНС. Ацетилхолин является медиатором мотонейронов нервной системы, которые расположены в передних рогах серого вещества спинного мозга и двигательных ядрах черепных нервов. Их аксоны направляются к скелетным мышцам и, разветвляясь, образуют нервно-мышечные синапсы. При этом один аксон может устанавливать контакт с сотнями мышечных волокон, но каждое мышечное волокно управляется только одним синапсом. Размер нервно-мышечных синапсов в десятки раз больше, чем синапсов в ЦНС, и пришедший по аксону мотонейрона даже одиночный ПД вызывает выделение значительного количества ацетилхолина (этап /). В результате развивающаяся на постсинаптическои мембране деполяризация оказывается настолько велика, что всегда запускает ПД мышечной клетки (//), который приводит к выбросу Са2+ из каналов ЭПС
(III), активации двигательных белков и сокращению (IV). Периферическое звено вегетативной нервной системы состоит из двух нейронов: тело первого (преганглионарного) находится в ЦНС, а аксон направляется к вегетативному ганглию; тело второго (постганглионарного) находится в ганглии, а аксон иннервирует гладкие мышечные или железистые клетки внутренних органов. Ацетилхолин в качестве
медиатора вырабатывается во всех преганглионарных клетках, а также в постганглионарных клетках парасимпатической части вегетативной нервной системы. Некоторые постганглионарные симпатические волокна (активирующие потовые железы и вызывающие расширение сосудов) также секретируют ацетилхолин. В ЦНС ацетилхолин вырабатывается частью нейронов ретикулярных ядер моста и интернейронами полосатого тела базальных ганглиев и некоторых других локальных зон. Рассматривается роль этого медиатора в регуляции уровня бодрствования, а также в системах памяти, двигательных системах. Доказана эффективность применения антагонистов ацетилхолина при ряде двигательных нарушений. Выделяясь из пресинаптического окончания, ацетилхолин действует на постсинаптические рецепторы. Эти рецепторы неоднородны и различаются локализацией и рядом свойств. Выделено два типа рецепторов (рис. 3.26): первый, помимо ацетилхолина, возбуждается под действием алкалоида табака никотина (никотиновые рецепторы), второй тип активируется ацетилхолином и токсином мухомора мускарином (мускариновые рецепторы). Никотиновые рецепторы являются классическим примером ионотропных рецепторов: их ионный канал входит в состав рецептора и открывается сразу после присоединения ацетилхолина. Канал этот характеризуется универсальной проницаемостью для положительно заряженных ионов, но в обычных условиях (при открытии на фоне ПП) в связи с никотиновыми рецепторами наблюдается в основном входящий Na+-TOK, вызывающий деполяризацию мембраны и возбуждение нейрона.
Никотиновые рецептры расположены на постсинаптической мембране поперечно-полосатых волокон скелетных мышц (нервно-мышечные синапсы); в синапсах вегетативных ганглиев и в меньшем количестве, чем мускариновые рецепторы, в ЦНС. Областью, наиболее чувствительной к никотину, являются вегетативные ганглии, поэтому первые попытки курения приводят к значительным нарушениям в деятельности органов: скачкам артериального давления, тошноте, головокружению. По мере привыкания сохраняется в основном симпатический компонент действия: никотин начинает работать преимущественно как стимулятор многих систем организма. Присутствует также и центральное активирующее влияние (на головной мозг) ацетилхолина. Сверхдозы никоти-
никотина E0 и более мг) вызывают резкое учащение сердцебиения, судороги и остановку дыхания. Во время курения никотин действует как слабый наркотический препарат-стимулятор, вызывая развитие не только привыкания, но и зависимости. Наркотическая зависимость — это ситуация, когда организм включает поступающий извне препарат в свой метаболизм, т. е. начинает «рассчитывать» на его постоянный приток. При отказе от препарата происходит сбой в использующих его системах мозга: наблюдается резкое ухудшение самочувствия, депрессия{абстинентный синдром или синдром отмены)- Человеку, попавшему в зависимость, наркотик необходим уже не столько для того, чтобы почувствовать бодрость и эйфорию, сколько для возврата хотя бы к относительно нормальному уровню жизнедеятельности. Наиболее известным антагонистом никотиновых рецепторов является тубокурарин — активное действующее начало яда некоторых южноамериканских растений. Основным «местом приложения» его влияния являются нервно-мышечные синапсы (вариант /). При этом происходит последовательное расслабление и паралич мышц пальцев, затем глаз, рук и ног, шеи, спины и, наконец, дыхательных. Мускариновые рецепторы являются метаботропными; они связаны с G-белками, и присоединение к ним ацетилхолина приводит к синтезу вторичных посредников. Выделяют две основные локализации мускариновых рецепторов: синапсы, образуемые постганглионарными (в основном парасимпатическими) вегетативными волокнами и ЦНС. В первом случае в качестве вторичных посредников используются инозитолтрифосфат и диацилглицерол; во втором — цГМФ. Ионные последствия возбуждения мускариновых рецепторов весьма разнообразны: в сердце наблюдается увеличение проводимости для ионов К+, что приводит к гиперполяризации и снижению частоты сокращений; в гладких мышцах отмечаются изменения проводимости как для К+, так и для Na+ (возможна гипер- или деполяризация в зависимости от конкретного органа). В ЦНС отмечается снижение проницаемости мембраны для К+ (деполяризация; возбуждающее действие), но синапсы, содержащие мускариновые рецепторы, могут располагаться как на тормозных, так и на возбуждающих нейронах коры и базальных ганглиев. В связи с этим последствия блокады либо активации мускариновых рецепторов на поведенческом уровне оказываются очень индивидуальны; их выраженность и направленность зависит от конкретной химической структуры того или иного препарата. Эффекты мускарина носят преимущественно парасимпатический характер: при отравлении мухоморами наблюдается тошнота, повышенное пото- и слюноотделение, слезотечение, боли в животе, снижение артериального давления и сердечной активности.
Классическим антагонистом мускариновых рецепторов является атропин — токсин белены и дурмана. Его периферические эффекты прямо противоположны действию мускарина: происходит снижение тонуса мышц желудочно-кишечного тракта, учащается сердцебиение, прекращается слюноотделение (сухость во рту), расширяются зрачки, наблюдаются и центральные эффекты (двигательное и речевое возбуждение, галлюцинации). Инактивация ацетилхолина происходит непосредственно в синаптической щели. Ее осуществляет фермент ацетилхоли-нэстераза, разлагающий медиатор до холина и остатка уксусной кислоты, затем холин всасывается в пресинаптическое окончание и может вновь использоваться для синтеза ацетилхолина. Ацетилхолинэстераза имеет активный центр, узнающий холин, и один активный центр, «отрывающий» ацетильную
группу от исходной молекулы. Последний часто является местом атаки специфических блокаторов (вариант //). Примером подобного блокатора служит прозерин (неостигмин), применяемый при миастении, которая встречается примерно у трех человек на тысячу (чаще у женщин). Симптомами заболевания служат быстрая мышечная утомляемость, непроизвольное опускание век, замедленное жевание. Такие больные очень чувствительны к тубокурарину, а введение блокаторов ацетилхолинэстеразы ослабляет патологические проявления. В настоящее время известно, что у значительной части больных миастенией число никотиновых рецепторов примерно на 70% меньше, чем в норме. Причина этого состоит в том, что иммунная система больного вырабатывает антитела на никотиновые рецепторы. Эти антитела ускоряют разрушение рецепторов на мембране, ослабляя передачу в нервно-мышечном синапсе. Прозерин и сходные с ним препараты называют обратимыми блокаторами ацетилхолинэстеразы, их действие прекращается через несколько часов после введения, кроме того, существуют необратимые блокаторы того же фермента. В этом случае вещество, нарушающее работу ацетилхолинэстеразы, вступает с белком в устойчивую химическую связь и выводит его из строя. Таким образом действуют фосфорорганические соединения, применяемые как препараты против насекомых (инсектициды): хлорофос, тиофос и сходные с ними соединения могут вызвать у человека сужение зрачков, потливость, снижение артериального давления, подергивания мышц. Еще более сильными агентами-блокаторами являются различные нервно-паралитические газы (зарин): легко проникая через все барьеры организма, они вызывают судороги, потерю сознания и паралич. Смерть наступает от остановки дыхания. Для немедленного ослабления эффектов отравляющих газов рекомендуется использование атропина; для восстановления деятельности ацетилхолинэстеразы — особые вещества-реактиваторы, «отрывающие» блокатор от фермента. Другим примером разрушительного действия на ацетилхо-линергический (использующий ацетилхолин в качестве медиатора) синапс являются нейротоксины змей. Например, яд кобры содержит альфа-нейротоксин, необратимо связывающийся с никотиновым рецептором и блокирующий его, а также бета-нейротоксин, который тормозит выделение медиатора из пресинаптического окончания.
2-3. Сосудодвигательный центр продолговатого мозга и моста, принципы его функционирования; барорецепторный рефлекс. Дыхательная аритмия.
Продолговатый мозг и мост: выполняют ряд «жизненно важных» функций; здесь находятся: дыхательный центр (запуск вдохов и выдохов); сосудодвигательный центр (работа сердца, тонус сосудов); центры, обеспечивающие врожденное пищевое поведение (центр вкуса, сосания, глотания, слюноотделения, рвоты и др.); главный центр бодрствования («блок питания» ЦНС).
Схема расположения дыхательных нейронов продолг. мозга и моста:
Е – экспираторные (выдох),
I – инспираторные (вдох).
Среди нейронов вдоха ключевую роль играют клетки-пейсмекеры, находящиеся в ядрах нижней части ромбовидной ямки.
Врожденно обусловленная частота их активации у человека: примерно 1 волна в 5 сек (12 раз в мин = частота дыхания во сне).
От клеток-пейсмекеров (генераторов ритма) ПД передаются к другим дыхат. нейронам и мотонейронам шейных и грудных сегментов спинного мозга, запускающим сокращение диафрагмы и межреберных мышц.
Вдох приводит к постепенному растяжению легких и стенок грудной клетки.
Растяжение активирует особые механорецепторы (отростки чувствительных нервных клеток, входящие в состав Х нерва), передающие сигнал в продолговатый мозг и мост.
Этот сигнал тормозит инспираторные и включает экспираторные нейроны (вдох сменяется выдохом).
После выдоха возникает пауза (до нового включения пейсмекеров).
На частоту работы пейсмекеров (долю посто-янно открытых Na+-каналов) влияют сигналы от хеморецепторов и ствола мозга.Хеморецепторы: концентрация О2 и СО2 в крови; влияния ствола: эмоции (голубое пятно), температура (гипоталамус), центры бодрствования, боль, стресс и др.
Возможен, кроме того, произвольный контроль дыхания.
Еще о дыхательных центрах:
инспираторные нейроны – это не только пейсмекеры, но и клетки, «зацикливающие» ПД по замкнутому контуру, что дает возможность оказывать на мотонейроны стабильное активирующее действие;
хеморецепторы СО2 (и Н+) представляют собой нейроны на дне ромбовидной ямки; активируются в основном при физической нагрузке;
хеморецепторы О2 расположены в каротидном синусе (область разветвления на наружную и внутреннюю сонные артерии); важны, например, при подъеме в горы (на высоте 5 км воздуха в 2 раза меньше);
пробуждение приводит к активации пейсмекеров центрами бодрствова-ния, и частота дыхания растет до 16-18 в мин; при эмоциях и физич. нагрузке – до 30-40 в мин.
Передача информации о содержании О2 в крови идет по волокнам IX нерва (кроме того, на схеме показана область, где расположены рецепторы растяжения аорты; сигнал идет по волокнам Х нерва).
Продолговатый мозг и мост: центры кашля, чихания, задержки дыхания при погружении в воду (оборонительные реакции).
Барорецепторы (растяжение стенок сосудов)
Барорецепторный рефлекс – компенсаторная реакция на изменение растяжения стенок дуги аорты и каротидного синуса
Если давление оказывается ниже нормы (у собаки около 160 мм рт.ст.), то активируется симпатическая система, сердце начинает биться чаще и сильнее; если давление выше нормы – активируется блуждающий нерв, работа сердца тормозится.
Дыхательная аритмия: результат влияния дыхательного центра на сосудодвигательный на примере частоты сердечных сокращений (ЧСС) собаки.
Во время вдоха интервал между сокращениями сердца уменьшается (ЧСС растет); во время выдоха – наоборот.
Дыхательной аритмии
подвержена активность как симпатических, так и парасимпатических нервов, однако только действие Ацх развивается и прекращается достаточно быстро (благодаря Ацх-эстеразе); эффекты NE «не успевают» за дыхательным ритмом.
Т.о., выраженность дыхат. аритмии – показатель активности парасимпатической системы.
Сверхаритмия у новорож-денных – признак незрелости сосудодвиг. центра; нужны ноотропы, а не сердечные препараты!
Основные связи сосудодвигательного центра продолговатого мозга и моста (на выходе показаны только симпат. эффекты):
1. Барорецепторы сосудов.
2. Периферические хемо-
рецепторы (хемоРЦ).
3. Центральные хемоРЦ.
4. Дыхательные центры.
5. Влияния гипоталамуса (терморегуляция, боль и другие врожденно значимые стимулы, эмоции) и коры больших полушарий (пере-ключаются через гипотала-мус и средний мозг; эмоции, связанные с оценкой ситуа-ции как потенциально значи-мой, опасной и т.п.; центр таких эмоций – поясная изв.).
3-1. Нейроны и глиальные клетки: общая характеристика, разнообразие, функции. Серое и белое вещество мозга (на примере спинного мозга); образование миелиновых оболочек..
Нейроны
Нервная ткань состоит из нервных клеток — нейронов и вспомогательных нейроглиальных клеток, или клеток-спутниц. Нейрон — элементарная структурно-функциональная единица нервной ткани. Основные функции нейрона: генерация, проведение и передача нервного импульса, который является носителем информации в нервной системе. Нейрон состоит из тела и отростков, причем эти отростки дифференцированы построению и функции. Длина отростков у различных нейронов колеблется от нескольких микрометров до 1—1,5 м. Длинный отросток (нервное волокно) у большинства нейронов имеет миелиновую оболочку, состоящую из особого жироподобного вещества — миелина. Она образуется одним из типов нейроглиальных клеток — олигодендроцитами. По наличию или отсутствию миелиновой оболочки все волокна делятся соответственно на мякотные (миелинизированые) и безмякотные (немиелинизированные). Последние погружены в тело специальной нейроглиальной клетки нейролеммоцита. Миелиновая оболочка имеет белый цвет, что позволило разразделить вещество нервной системы на серое и белое. Тела нейронов и их короткие отростки образуют серое вещество мозга, а волокна — белое вещество. Миелиновая оболочка способствует изоляции нервного волокна. Нервный импульс проводится по такому волокну быстрее, чем по лишенному миелина. Миелин покрывает не все волокно: примерно на расстоянии в 1 мм в нем имеются промежутки — перехваты Ранвье, участвующие в быстром проведении нервного импульса. Функциональное различие отростков нейронов связано с проведением нервного импульса. Отросток, по которому импульс идет от тела нейрона, всегда один и называется аксоном. Аксон практически не меняет диаметр на всем своем протяжении. У большинства нервных клеток это длинный отросток. Исключением являются нейроны чувствительных спинномозговых и черепных ганглиев, у которых аксон короче дендрита. Аксон на конце может ветвиться. В некоторых местах (миелинизированных аксонов — в перехватах Ранвье) от аксонов могут перпендикулярно отходить тонкие ответвления — коллатерали. Отросток нейрона, по которому импульс идет к телу клетки, — дендрит. Нейрон может иметь один или несколько дендритов. Дендриты отходят от тела клетки постепенно и ветвятся под острым углом. Скопления нервных волокон в ЦНС называются трактами, или путями. Они осуществляют проводящую функцию в различных отделах головного и спинного мозга и образуют там белое вещество. В периферической нервной системе отдельные нервные волокна собираются в пучки, окруженные соединительной тканью, в которой проходят также кровеносные и лимфатические сосуды. Такие пучки образуют нервы — скопления длинных отростков нейронов, покрытых общей оболочкой. Если информация по нерву идет от периферических чувствительных образований — рецепторов — в головной или спинной мозг, то такие нервы называются чувствительными, центростремительными или афферентными. Чувствительные нервы — нервы, состоящие из дендритов чувствительных нейронов, передающие возбуждение от органов чувств к ЦНС. Если информация по нерву идет из ЦНС к исполнительным органам (мышцам или железам), нерв называется центробежным, двигательным или эфферентным. Двигательные нервы — нервы, образованные аксонами двигательных нейронов, проводящие нервные импульсы от центра к рабочим органам (мышцам или железам). В смешанных нервах проходят как чувствительные, так и двигательные волокна. В том случае, когда нервные волокна подходят к какому-либо органу, обеспечивая его связь с ЦНС, принято говорить об иннервации данного органа волокном или нервом. Тела нейронов с короткими отростками по-разному расположены относительно друг друга. Иногда они образуют достаточно плотные скопления, которые называются нервными ганглиями, или узлами (если они находятся за пределами ЦНС, т. е. в периферической нервной системе), и ядрами (если они находятся в ЦНС). Нейроны могут образовывать кору — в этом случае они расположены слоями, причем в каждом слое находятся нейроны, сходные по форме и выполняющие определенную функцию (кора мозжечка, кора больших полушарий). Кроме того, в некоторых участках нервной системы (ретикулярная формация) нейроны расположены диффузно, не образуя плотных скоплений и представляя собой сетчатую структуру, пронизанную волокнами белого вещества. Передача сигнала от клетки к клетке осуществляется в особых образованиях — синапсах. Это специализированная структура, обеспечивающая передачу нервного импульса с нервного волокна на какую-либо клетку (нервную, мышечную). Передача осуществляется с помощью особых веществ - медиаторов.
Разнообразие
Тела самых крупных нейронов достигают в диаметре 100—120 мкм (гигантские пирамиды Беца в коре больших полушарий), самые мелкие — 4—5 мкм (зернистые клетки коры мозжечка). По количеству отростков нейроны делятся на мультиполярные, биполярные, униполярные и псевдоуниполярные. Мультиполярные нейроны имеют один аксон и много дендритов, это большинство нейронов нервной системы. Биполярные имеют один аксон и один дендрит, униполярные — только аксон; они характерны для анализаторных систем. Из тела псевдоуниполярного нейрона выходит один отросток, который сразу после выхода делится на два, один из которых выполняет функцию дендрита, а другой аксона. Такие нейроны находятся в чувствительных ганглиях.
Функции
Функционально нейроны подразделяются на чувствительные, вставочные (релейные и интернейроны) и двигательные. Чувствительные нейроны — нервные клетки, воспринимающие раздражения из внешней или внутренней среды организма. Двигательные нейроны — моторные нейроны, иннервирующие мышечные волокна. Кроме того, некоторые нейроны иннервируют железы. Такие нейроны вместе с двигательными называют исполнительными.
Часть вставочных нейронов (релейные, или переключательные, клетки) обеспечивает
связь между чувствительными и двигательными нейронами. Релейные клетки, как правило, весьма крупные, с длинным аксоном (тип Гольджи I). Другая часть вставочных нейронов имеет небольшой размер и относительно короткие аксоны (интернейроны, или тип Гольджи II). Их функция связана с управлением состояния релейных клеток.
Все перечисленные нейроны формируют совокупности — нервные цепи и сети, проводящие, обрабатывающие и запоминающие информацию. На концах отростков ней-
нейронов расположены нервные окончания (концевой аппарат нервного волокна). Соответственно функциональному разделению нейронов различают рецепторные, эффекторные и межнейронные окончания. Рецепторными называются окончания дендритов чувствительных нейронов, воспринимающие раздражение; эффекторными — окончания аксонов исполнительных нейронов, образующие синапсы на мышечном волокне или на железистой клетке; межнейронными — окончания аксонов вставочных и чувствительных нейронов, образующие синапсы на других нейронах.
Глиальные клетки
В нервную ткань, кроме нейронов, входят и клетки — спутницы нейронов — нейроглия.
А) Олигодендроциты (в т.ч. Шванновские клетки): электроизоляции нейронов; миелин – липидно-бел-ковый комплекс, придающий белый цвет скоплени-ям аксонов («белое в-во»); рассеянный склероз: на белки миелина развивается аутоиммунная реакция.
Б) Астроциты: механическая защита и слежение за составом межклеточной среды; образуют гема-то-энцефалический барьер (ГЭБ), задерживающий проникновение в мозг «посторонних» химических веществ (в т.ч. лекарственных препаратов).
В) микроглия: фагоциты нервной ткани.
Нейроглия выполняет защитную функцию. Она заключается, во-первых, в том, что глиальные клетки (в основном астроциты) вместе с эпителиальными клетками капилляров образуют барьер между кровью и нейронами, не пропуская к последним нежелательные (вредные) вещества. Такой барьер называют гематоэнцефалическим. Во-вторых, клетки микроглии выполняют в нервной системе функцию фагоцитов. Осуществляя трофическую функцию, нейроглия снабжает нейроны питательными веществами, управляет водно-соленым обменом и т.п.
Миелинизация
Чем толще проводник-аксон, тем < его электрич. сопротивление и легче происходит запуск ПД. Это позволяет увеливать скорость за счет наращивания диаметра аксона. Рекорд - гигантский аксон кальмара (d=0.5-1 мм, V=10 м/с). «Радикальный» рост скорости проведения – за счет миеленизации аксонов, которая обеспечивается одним из типов глиальных клеток – Шванновскими клетками. Клетки нейроглии (астроциты, олигодендроциты, микроглия) заполняют все пространство между нейронами, защищая их от механических повреждений (опорная функция). Их примерно в 10 раз больше, чем нейронов, и, в отличие от них, глиальные клетки сохраняют способность к делению в течение всей жизни. Кроме того, они образуют миелиновые оболочки вокруг нервных волокон. В ходе этого процесса олигодендроцит (в ЦНС) или его разновидность — шванновская клетка (в периферической нервной системе) обхватывает участок нервного волокна. Затем она образует вырост в виде язычка, который закручивается вокруг волокна, формируя слои миелина (цитоплазма при этом выдавливается). Таким образом, слои миелина представляют собой, по сути, плотно спрессованную цитоплазматическую мембрану. Каждая Шванновская клетка, наматываясь на аксон, закрывает область около 1 мм. Между клет-ками – голые участки (перехваты Ранвье). Протяженность перехватов Ранвье = 1% от общей длины аксона. В итоге это приводит к росту скорости проведения ПД до 100-120 м/с. (Креветка – 200 м/с.).
Серое и белое вещество (на примере спинного мозга)
В продольном направлении СМ разделен на 31 сегмент: 8 шейных, 12 грудных, 5 поясничных, 6 крестцово-копчиковых. В соответствии с этим наше тело (от шеи до копчика) разделено на 31 «этаж». Каждый сегмент СМ работает со своим этажом тела + обменивается сигналами с головным мозгом. Шейные сегменты управляют шеей, руками и дыхательными мышцами; грудные – областью грудной клетки и брюшной полости; поясничные – ногами; крестцово-копчиковые – областью таза.
В центре – серое вещество (тела нейронов, дендриты): обработка информации. Вокруг серого – белое вещество (аксоны) – обмен информацией с головным мозгом. Серое вещество делится на задние, боковые и передние рога, а также промежуточное ядро.
В задние рога входят задние корешки; из передних и боковых рогов выходят передние корешки. Передние и задние корешки сливаются в спинномозговой нерв. На задних корешках находятся спинномозговые ганглии, которые содержат сенсорные нейроны.
Нейроны спинномозгового ганглия воспринимают сенсорные стимулы и через задние корешки передают сигналы в задний рог серого вещества нейроны заднего рога осуществляют первичную обработку сенсорных сигналов (не пропускают слабые и/или постоянно действующие сигналы). Нейроны промежуточного ядра сопоставляют сенсорные сигналы и команды головного мозга; в результате возможен запуск реакции
дальнейшая передача сигнала в передний рог означает запуск двигательной реакции (возможен произвольный контроль). Дальнейшая передача сигнала в боковой рог означает запуск вегетативной реакции (нет произвольного контроля)
при очень сильной боли головной мозг «не успевает вмешаться»; с другой стороны, только влияний головного мозга достаточно для запуска сокращений мышц (произвольное движение).
3-2. Роль норадреналина (НА) в деятельности симпатической нервной системы: строение и работа НА-синапсов, типы и подтипы рецепторов, аутоторможение.
Норадреналин – образуется в результате цепи химических ре-акций из пищевой аминокислоты тирозина; характерный элемент структуры – ароматическое (бензольное) кольцо.
к NЕ существует два основных типа рецепторов (альфа- и бета-адренорецепторы).
Образование:
Синтез – в пресинаптическом окончании, после чего NЕ переносится внутрь везикул и готов к экзоцитозу.
Последовательность реакций:
Тирозин превращается в L-дофа (L-DOPA); фермент тирозин-гидроксилаза (его актив-ность ограничивает скорость синтеза NE).
L-дофа становится дофамином (одним из медиаторов ЦНС).
Дофамин превращается в NЕ.
Из NЕ (норэпинефрина) в надпочечниках получается адреналин (эпинефрин).
Адренорецепторы (как А-, так и Б-типов) метаботропные:
Б-1-подтип характерен для сердца, вызывает учащение и усиление сердечных сокращений (более активное образование цАМФ, открывание Na+-каналов и Са2+-каналов);
Б2-подтип характерен для мышечных клеток бронхов, вызывает их расслабление и расширение бронхов (активация синтеза цАМФ, но закрывание Са2+-каналов, открывание К+-каналов).
все Б-рецепторы активирует изадрин и тормозит пропранолол.
Большое практическое значение имеет избира-тельный Б1-антагонист атенолол (используется при гипертонии) и избирательный Б2-агонист сальбутамол (расширение бронхов при астме)
А1-подтип характерен для мышечных клеток, расширяющих зрачок, для стенок сосудов и сфинктеров ЖКТ (увеличение тонуса за счет открывания дополнительных Са2+-каналов);
А2-подтип характерен для пресинаптических окончаний, оказывает тормозящее действие на Са2+-каналы, что снижает экзоцитоз медиаторов (самого NЕ и, например, Ацх в случае конкуренции симпатич. и парасимпатич. влияний на ЖКТ)
все А-рецепторы активирует нафтизин и тормозит фентоламин.
А-агонисты, сужающие сосуды носо-вой полости при насморке (нафтизин, галазолин), и избирательный А2-аго-нист клофелин (снижение активности сосудодвигательного центра продол-говатого мозга и моста).
Управление работой сердца:
с клетками-пейсмекерами («води-телями ритма») контактируют как симпатич., так и парасимпатич. волокна; выделяя NЕ и Ацх, они регулируют соотношение постоян-но открытых Na+ и К+-каналов, управляя частотой сердцебиений
С «рабочими» клетками сердца контактируют только симпатич. волокна; выделяя NЕ, они увеличи-вают открывание Са2+-каналов. В результате на фазе плато в мышечную клетку входит больше Са2+, и сокращение усиливается
Ослабить деятельность сердца при гипертонии наиболее эффективно можно с помощью
Б1-антагонистов (атенолол) и антагонистов Сa2+-каналов (верапамил).
Гладкая мускулатура:
ПД, а также медиаторы (NЕ, Ацх) и гормоны вызывают открывание Са2+-каналов; в гладкомышечную клетку входит Са2+, запускающий движение белковых нитей актина и миозина.
А пока – о преси-наптических эффектах NЕ.
Два основных варианта:
- самоторможение («аутоторможение») выброса NЕ из пресинаптического окончания (экономия медиатора, что особенно важно в условиях длительного стресса);
- торможение выброса Ацх из парасимпатического пресинаптического
окончания (один из уровней конкуренции влияний симпатической и парасимпатической систем на внутренние органы).
Эти эффекты идут, прежде всего, через 2-рецепторы и носят тормозный знак: ослабление активности Са2+-каналов и снижение экзоцитоза медиатора
При насморке (инфекционном, аллергическом) используют А-агонисты: нафтизин, галазолин и т.п.
Эти вещества (как и тормозящие воспаление антигистаминные препараты) не лечат заболевание,а лишь ослабляют симптомы.
Астма: воспаление на уровне бронхов.
Астма чаще всего имеет аллергическую или аутоиммунную природу; развивается отёк стенок бронхов и бронхиол; затруднено дыхание.
Для расширения бронхов используют Б2-агонисты (сальбутамол).
Но это лишь снятие симптомов; для настоящего лечения нужно выявить причину астмы (например, аллерген).
ЖКТ
ВНС модулирует состояние клеток плексуса: симпа-тич. постганглионарн. нейроны выделяют NE, оказы-вающий пост- (4) и пресинаптич. (5) тормозное дейст-вие; в случае парасимпатич. системы преганглионарн. волокна (6) образуют контакты с клетками «брюшного мозга», которые одновременно являются постгангли-онарными парасимпатическими нейронами
NE в головном мозге:
в передней верхней части моста («голубое пятно»), на дне ромбовидной ямки; всего несколько млн. клеток (< 1% нейронов ЦНС). Однако их аксоны расхо-дятся по всему головному и спинному мозгу и влияют на многие функции
NE влияет на нейроны ЦНС через α- и β-рецепторы, постсинаптические и пресинаптические (α2-рецепторы).
Основные эффекты NE можно определить как «психическое сопровождение стресса»:
- общая активация деятельности мозга (торможение центров сна, бессонница);
- увеличение двигательной активности («не сидится на месте»);
- снижение болевой чувствительнос-ти (стресс-вызванная анальгезия);
- улучшение обучения, запоминания (на фоне умеренного стресса; «учимся избегать опасности»);
- положительные эмоции при стрессе (азарт, «чувство победы», «экстрим»).
3-3. Слуховая и вестибулярная системы. Среднее и внутреннее ухо. Волосковые рецепторы. Подкорковые центры обработки слуховой и вестибулярной информации.
Три составляющие всякой сенсорной системы:
Рецепторы (чувствительные клетки или чувствительные отростки нервных клеток)
Проводящие нервы (спинномозговые и черепные)
Обрабатывающие структуры спинного и головного мозга (высшие центры – в коре больших полушарий)
Сенсорные системы с волосковыми рецепторами – вестибулярная и слуховая
Волосковые рецепторы относятся к группе механо-рецепторов и возбужда-
ются (генерируют РП и выделяют Glu) при изгибе волосков от меньшего к большему.
Общий «орган чувства» (орган, где расположены рецепторы) – внутреннее ухо. Состоит из улитки (слуховая часть), а также вестибулярных мешочков и каналов.
Наружное ухо: «рупор» для сбора колебаний воздуха.
Среднее ухо: энергия колебаний воздуха улавливается барабанной перепон-кой и передается слуховыми косточками на стенку улитки («овальное окно»).
В результате возникают колебания лимфы, наполняющей улитку («бегущая волна»), что приводит к изгибу волосков и возбуждению расположенных вдоль улитки рецепторов.
Улитка – частотно-амплитудный анализатор («на выходе» возникает спектр звука). В ЦНС – тонотопические карты.
Слуховые центры головного мозга:
1. Дорзальные и вентральные улитковые ядра; ядра верхней оливы.
Первая стадия латерального торможения; сравнение сигналов от правой и левой улитки = определение направления на источник звука
2. Нижние холмики четверохолмия: новизна.
Медиальные коленчатые тела таламуса (MGN): контрастирование сигнала перед передачей в кору.
Слуховая Кора:
Первичная – височная доля, по границе боковой борозды.
Завершение частотно-амплитудного анализа, наиболее точная тонотопическая карта.
В передних зонах – низкие частоты; особенно детально анализируется речевой диапазон – 50-500Гц
Вторичная слуховая кора – опознавание звуковых образов как совокупности частот (шумы, «звуки природы» и т.п.).
Как правило, свойства нейронов этой области – результат обучения.
Невербальная коммуникация (плач, смех и т.п.) опознается врожденно
Задняя часть височной доли – третичная слуховая кора: узнавание наиболее сложных слуховых образов (музыки, речи). Узнавание речи на слух - зона Вернике)
Основная проблема: нужно реагировать не на частоты и их совокупность, а общую форму спектра (вне зависимости от тональности).
Зона Брока – речедвигательный центр.
Вестибулярная система:
Присуще дивергенция
Зона коры-внутри боковой борозды (островковая доля) – вестибулярная чувст-ть и вкус
4-1. Белки, их строение, принцип «ключ-замок». Функции белков в нервных клетках (примеры ферментов, каналов, насосов, рецепторов). Защитные и двигательные белки.
Белки: состоят из мономеров – аминокислот (а/к). Каждая а/к имеет аминогруппу (-NH2), кислот-
ную группу (-COOH), радикал (R).
Всего в состав белков входят 20 типов а/к; они различаются лишь хим. структурой R.
Полимеризация а/к с образованием белка происходит за счет связывания СООН- предыдущей а/к с NH2- сле-дующей а/к (пептидная связь).\
Следующий этап: образование вторичной структуры белка.
Она формируется за счет присутствия на аминогруппах довольно большого положительного заряда, на кислотных группах – отрицательного заряда.
Взаимное притяжение таких (+) и (–) ведет к укладке белковой цепи в спи-раль (на каждом витке примерно 3 а/к; радикалы в этом вновь не участвуют).
Третичная структура белка – белковый клубок, формируется за счет взаимодействиярадикалов (и, следовательно,зависит от первичной структуры).
Взаимодействие радикалов может происходить благодаря: образованию ковалентной химической связи, притяжению неравномерно заряженных областей, контакту углеводородных участков (как в случае «хвостов» липидных молекул) и др.
Третичная структура (белковый клубок),как правило, имеет ямку («активный центр»). Здесь происходит захват молекулы-мишени («лиганда») по принципу «ключ-замок». После этого белок способен выполнить с лигандом те или иные операции.
Тип операции с лигандом = тип белка.
Тип операции с лигандом = тип белка
Примеры:
А)Белок-фермент: распад вещества ( транспортный)
Б) Белок-какнал со створкой
В)Постоянно открытый белковый канал
Г)Белок-насос
Д)Белок-рецептор
Е) защитные белки (белки-антитела; захватывают лиганды-антигены – вредные чужеродные вещества)
Ж)двигательные белки (актин и миозин; за счет их взаимодействия происходит сокращение мышечных клеток)
З)строительные белки (коллаген – белок межклеточного вещества соединительной ткани; кератин – волосы и ногти)
И)запасающие белки (казеины молока, глютены пшеницы и др.)
4-2. Ацетилхолин и норадреналин: медиаторная функция в ЦНС (регуляция уровня бодрствования, болевой чувствительности, эмоционального состояния и др.).
Ацетилхолин
«Ацетил» – остаток уксусной кислоты СН3-СООН
«Холин» – атом азота N, с которым соединены три группы -СН3 и одна группа этилового спирта
-СН2-СН2-ОН
Норадреналин
Норадреналин – образуется в результате цепи химических ре-акций из пищевой аминокислоты тирозина; характерный элемент структуры – ароматическое (бензольное) кольцо.
Ацх в ЦНС:
-нормализующую тонус мозга (т.е. при утомлении активируют ЦНС, при перевозбуждении – успокаивают)
-медиатор интернейронов головного мозга (ГМ)
NE в ЦНС(психическое сопровождение стресса)
- общая активация деятельности мозга (торможение центров сна, бессонница);
- увеличение двигательной активности («не сидится на месте»);
- снижение болевой чувствительнос-ти (стресс-вызванная анальгезия);
- улучшение обучения, запоминания (на фоне умеренного стресса; «учимся избегать опасности»);
- положительные эмоции при стрессе (азарт, «чувство победы», «экстрим»)
Положительные эмоции, связанные с выделением NE и адрена-лина: спорт, экстремальный спорт,
игромания (казино, компьют. игры).
Зависимость от NE – реальная проблема; игроманию лечат в тех же клиниках, теми же методами, что и наркоманию.
Наркотическими свойствами обладает эфедрин, а клофелин может вызвать глубокий обморок.
4-3. Зрительная система. Сетчатка и фоторецепторы. Родопсин и йодопсины. Ретинотопия. Подкорковые центры обработки зрительной информации.
Зрительная система:
Три составляющие всякой сенсорной системы:
Рецепторы (специализированные клетки)
Проводящие нервы (нерв образован отростками особых проводящих нейронов)
Обрабатывающие структуры спинного и головного мозга (высшие центры – в коре больших полушарий)
СЕТЧАТКА: палочки и колбочки (rods and cones) – фоторецепторы; кроме того, в сетчатке находится несколько типов обрабатывающих нейронов.)
На уровне сетчатки мы, таким образом, видим лишь три цвета, причем поточечно. Слияние точек и «формирование» многообразия цветов – функция коры больших полушарий
(импрессионисты и пуантилизм, TV , дисплеи и RGB-system).
Цветовое многообразие – зрительная иллюзия
Фоторецепторы включают: внутренний сегмент (ядро, митохондрии); синаптич. терминаль (медиатор – глутамат); наружный сегмент (ближе всего к периферии). Наружный сегмент содержит сотни мембранных дисков (палочки) либо складок (колбочки). На них располагаются светочувствительные пигменты – родопсин (палочки) либо один из 3-х йодопсинов (колбочки). Распад пигмента под действием света является причиной развития РП. Далее сигнал передают нейроны сетчатки; их аксоны формируют зрительный нерв.
Три типа колбочек (и три типа йодопсинов): красно-, зелено- и сине-чувствительные. Наследование «красного» и «зеленого» (но не «синего») сцеплено с Х-хромосомой.
Палочки (и родосин) обладают большей светочувствительностью, причем в более широком диапазоне; не различая цвета, они позволяют нам видеть в сумерках (адаптация млекопитающих к ночному образу жизни).
Палочки и колбочки передают сигнал на
1 млн. проводящих (ганглионарных) нейронов сетчатки (в зрительном нерве
1 млн. аксонов); далее происходит ретинотопическая передача в ЦНС
В целом принцип кодировки изображения в сетчатке (и зрительной системе вообще) сходен с принципами работы сканера и цифрового фотоаппарата: изображение считывается «поточечно», и в нем около 1 млн. пикселей.
Почему так мало? Очевидно, приходится выбирать между объемом информации (скоростью ее обработки) и качеством «картинки».
Для уменьшения «объема файла» пиксели сетчатки, в отличие от матрицы фотоаппарата, имеют разный размер. В результате качество изображения в центре поля зрения намного выше, чем
на периферии.
Зрительные центры головного мозга
Супрахиазменные ядра (передний гипоталамус)
Верхние холмики четверохолмия
Латеральные коленчатые тела и подушка таламуса
ЛКТ: 6 слоев клеток, несколько последовательных этапов латерального торможения.
Для зрительной системы таламическое «контрасти-рование» означает более четкое выделение
границ между объектами
Зрительная кора (затылочная доля, в т.ч. поле 17).
Ретинотопические проекции, в первичную зрительную кору:
Первичная зрительная кора получает проекции от ЛКТ; в ней – нейроны ориентационной чувствительности (реагируют на отрезки прямых линий, расположенные под разными углами к горизонту).
Вторичная зрительная кора: реакция на профиль «лица» другой обезьяны (оптимальный угол 80-100)Вторичная зрительная кора: узнавание геометрических фигур, объединение цветового и черно-белого зрения, детекция движения, «вычисление объема» (бинокулярное зрение).
Вторичная зрительная кора: реакция на обобщенный образ руки и отсутствие реакции на целый ряд других стимулов
Третичная зрительная кора: узнавание наиболее сложных зрительных образов, в т.ч. лиц конкретных людей (при нарушении – прозопагнозия) и чтение (при нарушении –оптическая и вербальная алексия).
5-1. Симпатическая нервная система: функции, анатомическая организация, особенности работы синапсов, примеры влияния на внутренние органы.
ВНС – часть нервной системы, управляющая работой внутренних органов. Состоит из двух конкурирующих подсистем – симпатической и парасимпатической, каждая из которых включает центральные и периферические звенья
Анатомически две части ВНС разобщены: симпатич. нейроны лежат в боковых рогах сер. в-ва грудных и верхних поясничных сегментов спинного мозга; парасимпатич. – в крестцовых сегментах и в головном мозге
Симпатическая часть вегетативной нервной системы иннервирует все органы и ткани тела человека — кожу, мышцы, внутренние органы, кровеносные и лимфатические сосуды и другие структуры
И симпатическая, и парасимпатическая части имеют центральные отделы в виде ядер (скоплений клеток вегетативной природы), расположенных в различных отделах мозга, и периферический отдел. Периферический отдел вегетативной нервной системы включает находящиеся за пределами мозга (вне полости черепа и позвоночного канала) вегетативные нервы, нервные волокна, узлы (ганглии), вегетативные сплетения и нервные окончания.
У симпатической части к центральному ее отделу принадлежат ядра, расположенные в боковых рогах спинного мозга с VIII шейного (I грудного) по II поясничный сегмент.
К периферическому отделу симпатической части относятся парный симпатический ствол, расположенный по сторонам от позвоночного столба (справа и слева) с его соединительными ветвями (белыми и серыми); нервы, идущие от симпатического ствола к внутренним органам и сосудам, к крупным симпатическим сплетениям, находящимся в брюшной полости и в полости таза, нервные окончания симпатической природы.
Управление работой сердца: с клетками-пейсмекерами («водителями ритма») контактируют как симпатич., так и парасимпатич. волокна; выделяя NЕ и Ацх, они регулируют соотношение постоянно открытых Na+ и К+-каналов, управляя частотой сердцебиений.
С «рабочими» клетками сердца контактируют только симпатич. волокна; выделяя NЕ, они увеличи-вают открывание Са2+-каналов. В результате на фазе плато в мышечную клетку входит больше Са2+, и сокращение усиливается.
В целом симпатич. НС учащает и усиливает сокращения; аналогичным образом действует выделяемый надпочечниками адреналин.
Стимуляция симпатич. нервов: частота разрядов пейсмекера растет за счет увеличения Na+-проводимости и снижения К+-проводимости
5-2. Синтез ацетилхолина (Ацх). Ацетилхолинэстераза и инактивация Ацх. Эффекты блокаторов Ацх-эстеразы. Миастения и ее лечение.
«Ацетил» – остаток уксусной кислоты СН3-СООН
«Холин» – атом азота N, с которым соединены три группы -СН3 и одна группа этилового спирта
-СН2-СН2-ОН
Синтез:
П1 – остаток уксусной кислоты, сое-диненный с коферментом А (СоА).
П2 – холин («витаминоид»: полу-чаем только с пищей).
Мед – ацетилхолин (Ацх); фермент: холин ацетил-трансфераза.
Синтез – в пресинаптическом окон-чании, после чего Ацх переносится внутрь везикул и готов к экзоцитозу
Инактивация Ацх происходит с помощью фермента ацетилхолинэстеразы. Ацх-эстераза расположена на постсинаптической мембране и в синаптической щели. Она очень быстро «разрывает» Ацх на холин и остаток уксусной кислоты (ацетат). На следующем шаге холин переносится с помощью особого белка-насоса обратно в пресинаптическое окончание и вновь используется для синтеза Ацх.
Блокаторы Ацх-эстеразы активируют передачу сигнала в ацетилхолиновых синапсах, вызывая в больших дозах судороги (нервно-мышечные синапсы), спазм бронхов и остановку сердца (парасимпатические синапсы).
Примеры блокаторов:
токсин малабарских бобов эзерин (физостигмин);
фосфорорганические инсекти-циды (хлорофос, дихлофос и т.п.; могут вызывать токсикоманию);
боевые нервно-паралитические газы (зарин, табун).
Прозерин и более мягко действующий пиридостигмин, созданные на основе эзерина, исполь-зуют при миастении (аутоим-мунное заболевание: антитела атакуют никотиновые ре-цепторы; развивается мышечная слабость, вялость, быстрая утомляемость; характерн. признак – опущенные веки). Основное лечение – иммуносупрессия.
Пиридостигмин и сходные препараты, а также ряд агонистов рецепторов Ацх используются для лечения болезни Альцгеймера – самого распространенного нейродегенеративного заболевания, при котором первыми страдают Ацх-нейроны больших полушарий
Пиридостигмин (на основе эзерина): лекарственное средство при миастении (50 на 1 млн.; аутоиммунное заболевание: антитела атакуют никотиновые рецепторы; развивается мышечная слабость, вялость, быстрая утомляемость; характерн. признак – опущенные веки). Основное лечение – иммуносупрессия.
Пиридостигмин и сходные препараты (амиридин), а также ряд агонистов ацетилхолина используются для лечения болезни Альцгеймера – самого распространенного нейродегенеративного заболевания, при котором первыми страдают Ацх-нейроны больших полушарий.
5-3. Экстрапирамидная система: функции основных структур и трактов. Рубро-, вестибуло- и ретикулоспинальные тракты. Тектоспинальный тракт.
Экстрапирамидной системы управления движениями, в которую входят также вестибуло-спинальный и ретикуло-спинальный тракты
Местонахождение:большие полушария, ствол головного мозга
В моторной коре начинаются кортико-спинальный (пирамидный) тракт, пути к двигательным ядрам черепных нервов мозжечку, базальным ганглиям и др.
Тектоспинальный тракт
Этот тракт берет начало в глубоких слоях верхнего бугорка четверохолмия ( рис. 35.24 ). Аксоны переходят на противоположную сторону мозга сразу под околоводопроводным серым веществом , затем спускаются в переднем канатике и оканчиваются на нейронах медиальной группы в верхнем шейном отделе спинного мозга . Тектоспинальный тракт регулирует контрлатеральные движения головы в ответ на зрительные, слуховые и соматические стимулы.
6-1. Парасимпатическая нервная система: функции, анатомическая организация, особенности работы синапсов, примеры влияния на внутренние органы.
Парасимпатическая НС: трофотропная функция (управля-ет органами в ситуациях возоб-новления запасов энергии: отдых, восстановление сил, но не сон).
Парасимп. система: ганглии рядом с органами или в стенках органа
Парасимпатическая часть иннервирует только внутренние органы, которые, таким образом, имеют двойную вегетативную иннервацию — и симпатическую, и парасимпатическую. Все остальные органы и ткани получают только симпатическую вегетативную иннервацию
У парасимпатической части нервной системы центральный отдел расположен в стволе головного мозга в виде ядер черепных нервов (глазодвигательного, лицевого, языкоглоточного, блуждающего) и в боковых рогах крестцовых сегментов спинного мозга (с II по IV).
Периферический отдел парасимпатической части нервной системы представлен нервными волокнами в составе черепных и тазовых нервов, нервными узлами, расположенными в стенках внутренних органов или в непосредственной близости от органов, нервными окончаниями парасимпатической природы.
Ко многим внутренним органам парасимпатические волокна идут в составе блуждающих нервов (X пара черепных нервов). Этот нерв иннервирует почти все органы грудной и брюшной полостей. Половые органы, мочевой пузырь и конечная часть толстой кишки получают парасимпатическую иннервацию из крестцового отдела спинного мозга.
Медиатором, образующимся в окончаниях парасимпатических нервных волокон, является ацетилхолин, который уменьшает ритм и силу сердечных сокращений, суживает просвет бронхов, усиливает желудочно-кишечную перистальтику, активизирует секрецию желез желудка, кишечника, поджелудочной железы, суживает зрачок.
Парасимпатич. НС в ос-новном лишь урежает сокращения сердца (вплоть до полной остановки).
6-2. Синтез моноаминов (норадреналина, дофамина, серотонина, гистамина). Инактивация моноаминов, роль МАО-А и МАО-Б, применение блокаторов МАО.
Норадреналин, дофамин, серотонин, гистамин в связи с особенностями химического строения относят к моноаминам – производ-ным аминокислот (пищевых), потерявших СО2 (декарбоксилирование).
Это обуславливает сходство ряда их свойств и, прежде всего, наличие общих путей синтеза и инактивации.
Норадреналин, дофамин, серотонин, гистамин в связи с особенностями химического строения относят к моноаминам – производ-ным аминокислот (пищевых), потерявших СО2 (декарбоксилирование).
Это обуславливает сходство ряда их свойств и, прежде всего, наличие общих путей синтеза и инактивации.
Норадреналин
Cинтез:
Тирозин превращается в L-дофа (L-DOPA); фермент тирозин-гидроксилаза (его актив-ность ограничивает скорость синтеза NE).
L-дофа становится дофамином (одним из медиаторов ЦНС).
Дофамин превращается в NЕ.
Из NЕ (норэпинефрина) в надпочечниках получается адреналин (эпинефрин).
Синтез – в пресинаптическом окончании, после чего NЕ переносится внутрь везикул и готов к экзоцитозу.
Инактивация(проверить; пишу общих антагонистов):
А-антагонист: фентоламин
Б- антагонист: пропранолол
Обратный захват норадреналина осуществляется особыми белками-насосами. Попав в пресинаптическое окончание, норадреналин может повторно «загружаться» в везикулы, но может и разлагаться с помощью фермента моноаминоксидазы (МАО). Инактивация происходит внутри митохондрий, на внутренней мембране которых располагается МАО. Чрезвычайно важно, что этот фермент осуществляет разложение и других моноаминов — дофамина и серотонина. Оказалось, что использование блокаторов МАО позволяет повысить активность всех трех медиаторных систем (антидепрессантные эффекты).
Дофамин
Синтез дофамина (DA):
Уже знакомая последовательность реакций:
Тирозин превращается в L-дофа; фермент тирозин-гидроксилаза.
L-дофа дает дофамин (декарбоксилирование )
Дофамин превращается в NЕ и т.д.
На стадии дофамина реакция останавливается в нейронах:
А) черной субстанции среднего мозга(аксоны идут в базальные ганглии).
Б) покрышки среднего мозга (аксоны идут в кору б. п/ш.)
В) гипоталамуса (короткие аксоны, локальные влияния и нейро-эндокринная функция).
Жизненный цикл DA:
1. Синтез в пресинаптическом окончании и экзоцитоз при приходе ПД.
2. Действие на постсинаптичес-кие рецепторы, связанные с G-белками
3. Действие на пресинаптические рецепторы: аутоторможение экзо-цитоза (как и в случае NE).
4. Инактивация: обратный захват и последующее повторное использова-
ние либо разрушение с помощью МАО (МАО – фермент моноаминоксидаза;расщепляет самые разные моноамины, в т.ч. медиаторы и гормоны)
МАО:
В случае МАО выделяют 2 подтипа фермента:
МАО-А – разрушает NE и 5-НТ;
МАО-Б – разрушает дофамин.
Ранее использовали неспецифические блокаторы МАО (ниаламид); теперь – более мягко действующие блокаторы МАО-А (пиразидол). Блокаторы МАО-Б (депренил) применяют при паркинсонизме
В случае обратного захвата белки-насосы для каждого из медиаторов-моноаминов хотя и похожи, но все же разные.
Используют неспецифические блокаторы обратного захвата (амитриптилин) и наиболее мягко действующие блокаторы захвата 5-НТ (флуоксетин = прозак).
Прозак: применение повышает уровень оптимизма и уверенности в себе.
На фоне блокаторов МАО может возникать «сырный синдром»: тирамин, которого много в сыре, бобовых, копче-ностях, не разрушается и оказывает NE-подоб-ное действие (нервное возб-е, гипертония).
Амфетамины:
•ослабляют обратный захват DA и даже обращают работу белков-насосов;
•активируют загрузку DA в везикулы (каждая везикула содержит теперь больше DA);
•частично блокируют МАО.
Серотонин
Серотонин является тканевым гормоном (увеличивает тонус гладких мышечных клеток в стенках сосудов и ряда других внутренних органов).
Кроме того, серотонин – медиатор ЦНС; вырабатывают нейроны ядер шва (верхне-центральная зона среднего мозга, моста и продолговатого мозга с переходом в спинной мозг); аксоны клеток ядер шва расходятся по всей ЦНС, образуя контакты обычного и варикозного типа
Синтез:
1. Из пищевой аминокислоты триптофана образуется 5-гидрокситриптофан; фермент триптофан-гидроксилаза.
2. Из 5-гидрокситриптофана образуется 5-гидрокситриптамин (5-НТ; серотонин); фермент декарбоксилаза ароматических аминокислот
Жизненный цикл 5-НТ:
В верхней части рисунка – пресинаптическое окончание.
Синтез 5-НТ из триптофана.
Перенос 5-НТ в везикулу.
Экзоцитоз 5-НТ.
Синаптическая щель.
Взаимодействие 5-НТ с постсинаптическим рецептором.
Отросток постсинаптической клетки.
5-НТ влияет на пресинаптический рецептор (аутоторможение экзоцитоза).
Обратный захват 5-НТ.
5-НТ повторно загружается в везикулу либо разрушается с помощью МАО.
Продукт распада 5-НТ гидрокси-индо-лил-уксусная кислота удаляется из пресинаптического окончания.
Гистамин
Синтез:
моноамин, образующийся при декарбоксилировании незаменимой пищевой аминокислоты гистидина
(ГДК – гистидин декарбоксилаза).
Функции:
На периферии – запускает воспалительные реакции (расширение сосудов, отек и др.).
В ЦНС – активирующий медиатор; соответствующие нейроны расположены в туберо-маммилярном ядре заднего гипоталамуса; их аксоны расходятся по всему мозгу.
6-3. Центры сна и бодрствования головного мозга (ретикулярные ядра, центральное серое вещество, голубое пятно и др.) Электроэнцефалограмма сна и бодрствования.
7-1. Мозговое и корковое вещество надпочечников: выделяемые гормоны и их эффекты (в т.ч. действие на нервную систему). ЦНС и управление работой надпочечников.
1.Мозговое, корковое вещество надпочечников.
2.Регуляция ЦНС
3.Гормоны
Корковое вещество надпочечников:
Минералокортикоиды ( регуляция обмена воды и минеральных веществ)
Глюкокортикоиды (решуляция обмена углеводов, превращение белков и жиров в углеводы)
Мозговое вещество надпочечников:
Адреналин (расширение сосудов сердца, мозга, мышц; усиление сердечной деятельности, расширение зрачков)
Норадреналин
(- общая активация деятельности мозга (торможение центров сна, бессонница);
- увеличение двигательной активности («не сидится на месте»);
- снижение болевой чувствительнос-ти (стресс-вызванная анальгезия);
- улучшение обучения, запоминания (на фоне умеренного стресса; «учимся избегать опасности»);
- положительные эмоции при стрессе (азарт, «чувство победы», «экстрим»).
Надпочечники — парные железы внутренней секреции, массой по 5—7 г, расположенные на полюсах почек. В каждом надпочечнике выделяют два слоя: корковый и мозговой. Эти слои железы совершенно различны по своему происхождению. Наружный корковый слой развивается из среднего зародышевого листка (мезодермы), а внутренний слой является видоизмененным узлом вегетативной нервной системы. Кора надпочечников подразделяется на три зоны: клубочковую, пучковую и сетчатую. Каждая из этих зон вырабатывает характерные для нее гормоны, которые жизненно не-обходимы для организма. Общее название гормонов коры надпочечников — кортикостероиды. В клубочковой зоне образуются минералокортикоиды, в пучковой — глюкокортикоиды, в сетчатой — глюкокортикоиды и некоторое количество половых гормонов. Все эти гормоны по своей химической природе — стероиды. Минералокортикостероиды получили свое название за то, что регулируют обмен таких минеральных элементов, как натрий и калий. Основным минералокортикоидом в организме человека является альдостерон, способствующий, во-первых, задержке в организме воды и натрия и, во-вторых, выведению калия. Основной орган-мишень для альдостерона — почки. Секретируемый под действием АКТГ и ренина почек альдостерон проникает в эпителиальные клетки стенок почечных канальцев, в цитоплазме этих клеток связывается со специфическим рецептором. Комплекс гормон — рецептор проникает в ядро клетки и приводит к синтезу фермента, приводящего к задержке выделения натрия и усилению выведения калия с мочой. Секреция альдостерона усиливается также при уменьшении объема плазмы крови: при сильной жажде или кровопотерях. Под действием альдостерона жидкость задерживается в организме и объем плазмы постепенно нормализуется. Глюкокортикоиды синтезируются в клетках пучковой зоны коры надпочечников. Основной глюкокортикоид — гидрокортизон (кортизол). Глюкокортикоиды получили свое название за то, что являются регуляторами углеводного обмена, усиливая цепь реакций, приводящих к образованию главного углевода в организме — глюкозы. Кроме того, кортизол тормозит расход глюкозы в периферических органах и тканях. Под влиянием кортизола тормозится проникновение пищевых аминокислот из крови в различные клетки и, как следствие, стимулируются процессы распада белка в различных тканях, что при некоторых патологиях может привести к снижению мышечной массы, замедлению заживления ран. Кортизол также тормозит образование жиров. Кортизол, как и все другие глюкокортикоиды, подавляет развитие воспаления. Воспаление характеризуется тремя симптомами: во-первых, притоком крови к воспаленному участку и его покраснением; во-вторых, увеличением проницаемости стенок капилляров в воспаленном участке и поступлением жидкости из капилляров в межклеточные пространства, т. е. отеком; и, в-третьих, как следствие первых двух процессов — болевыми ощущениями. Все эти три симптома устраняются кортизолом.
Глюкокортикоиды угнетают иммунитет, подавляя образование антител к чужеродным белкам, что позволяет использовать их для торможения реакций отторжения пересаженных органов. В ряде случаев, при кратковременном выбросе кортизола в кровь, описанные реакции не опасны для организма, однако длительное повышение уровня глюкокортикоидов в крови может привести к тому, что симптомы какого-либо инфекционного заболевания будут подавлены, а болезнь от этого не станет менее опасной. Поэтому применять глюкокортикоиды в качестве лекарств нужно только по назначению врача.
Кортизол необходим для создания реакции на сильные раздражители, приводящие к развитию стресса. Стресс можно определить как угрожающую ситуацию, развивающуюся под воздействием боли, кровопотери, страха. Кортизол препятствует кровопотере и, способствуя развитию сосудосуживающего эффекта норадреналина, сужает мелкие артериальные сосуды. Он усиливает сократительную способность сердечной мышцы. Кортизол помогает лучше переносить состояние физиологического шока, он обладает также пермиссивными эффектами, облегчая эффекты тироксина и норадреналина.
Секреция глюкокортикоидов регулируется АКТГ, причем под действием этого гормона не только усиливается секреция, но и стимулируется рост коры надпочечников, т. е. увеличивается масса ткани, способной вырабатывать кортизол. В течение всей жизни человека в клетках сетчатой зоны коры надпочечников вырабатываются мужские и женские половые гормоны. Так, у мужчин две трети половых гормонов — андрогенов синтезируется в семенниках, а одна треть — в коре надпочечников. При разрушении клеток коры надпочечников развивается болезнь Аддисона. Раньше хроническая недостаточность коры являлась, главным образом, следствием туберкулезной инфекции. В настоящее время это заболевание чаще возникает из-за разрушительного воздействия на кору надпочечников антител, ошибочно вырабатываемых клетками иммунной системы. У больных с болезнью Аддисона резко повышена секреция кортиколиберина и АКТГ, за счет чего организм пытается повысить выработку гормонов коры надпочечников, что невозможно по причине ее разрушения. Но кортиколиберин является также и фактором, усиливающим секрецию меланоцитстимулирующего гормона гипофиза, который, в свою очередь, приводит к синтезу большого количества пигмента меланина и потемнению кожи. У больных, кроме того, развивается мышечная слабость, снижается масса тела, страдает память и умственные способности, ослабевает концентрация внимания, иногда развиваются депрессии. Наблюдается усиленное выведение натрия с мочой и повышение уровня калия в крови. Для лечения болезни Аддисона необходимо постоянно вводить кортикостероиды. Возможна и противоположная патология: из-за усиленной секреции кортиколиберина или АКТГ наблюдается гиперфункция коры надпочечников и возникает синдром Кушинга. Еще одно заболевание, связанное с корой надпочечников, — адреногенитальный синдром, вызываемый врожденным отсутствием ферментов, необходимых для синтеза кортизола.
На систему гипоталамус — аденогипофиз нехватка кортизола оказывает стимулирующий эффект, и усиленная секреция кортиколиберина гипоталамусом и АКТГ аденогипофизом должна бы повысить уровень кортизола, что в этой ситуации невозможно. Зато естественно усиливается синтез других стероидов коры надпочечников и очень часто — мужских половых гормонов (андрогенов). При этом у девочек, несмотря на нормальный женский генотип, происходит развитие организма по мужскому типу и формируется мужской фенотип. Очень редко кора надпочечников начинает секретировать повышенные количества андрогенов в зрелом возрасте. В этом случае у женщин наблюдается оволосение по мужскому типу, облысение, уменьшение молочных желез, увеличение клитора. В мозговом веществе надпочечников содержатся специализированные клетки, синтезирующие два гормона: адреналин и норадреналин, относящиеся к классу катехоламинов и вырабатываемые из аминокислоты тирозина. Секреторную активность клеток мозгового вещества стимулирует медиатор ацетилхолин, выделяемый из окончаний преганглионарных симпатических нейронов, подходящих к этим клеткам. Таким образом, по своему эмбриональному происхождению и иннервации мозговое вещество надпочечников — симпатический нервный узел. Из клеток мозгового вещества выделяется приблизительно 80% адреналина и 20% норадреналина. Мишенями этих гормонов являются все ткани организма. Адреналин и норадреналин призваны мобилизовать все силы человека в случае ситуаций, требующих большого физического или умственного напряжения, при травме, инфекции, испуге. Под влиянием внешних или внутренних стрессовых факторов происходит секреция этих гормонов, которые увеличивают частоту сердечных сокращений и выброс крови при каждом из них; повышают давление крови для улучшения снабжения кислородом и глюкозой; учащают дыхание и расширяют бронхи; тормозят перистальтику (сокращение) желудочно-кишечного тракта. Кроме того, адреналин и норадреналин стимулируют энергетический обмен. Так как основным источником энергии в организме служит глюкоза, то под действием этих гормонов распадается полимер глюкозы гликоген, хранящийся в печени; при этом образуется много молекул глюкозы, поступающих в кровь. Стимулируется также распад жиров для покрытия энергетических затрат. Адреналин и норадреналин вызывают повышение возбудимости структур головного мозга, что также адаптирует нервную систему к работе в условиях стресса. Таким образом, когда человек или животное
находится в опасности, то гормоны мозгового вещества создают все условия для успешной борьбы или не менее успешного бегства. Многообразие эффектов адреналина и норадреналина связано с тем, что в различных тканях они реагируют с имеющимися там несколькими видами рецепторов.
Патологии мозгового вещества надпочечников возникают редко, однако при развитии в этой области опухоли (феохромоцитомы) происходят приступообразные выбросы адреналина, причем симптомы, наблюдаемые при этом, те же, что и при избыточном возбуждении симпатического отдела вегетативной нервной системы. Клинически феохромоцитома проявляется подъемом артериального давления (злокачественная гипертензия), не поддающаяся медикаментозному лечению.
Единственный метод лечения — хирургический. Любое разрушение или искусственное удаление надпочечников (адреналэктомия) приводит к быстрой гибели. Эффекты гормонов мозгового слоя надпочечников очень близки к эффектам, возникающим при возбуждении симпатического отдела вегетативной нервной системы, и обе эти системы, каждая своими путями, обеспечивает выживание организма в неблагоприятных условиях существования.
Кора надпочечников вырабатывает кортикостероиды. Часть из них («минералокортикоиды») регулирует обмен калия и натрия в почках. Вторая часть («глюкокортикоиды», ос-новной представитель кортизол) управляет обменом глюкозы в организме, в частности, усиливает ее образование из других веществ (белков, жиров); особенно ярок этот эффект при стрессе. В целом глюкокортикоиды перестраи-вают обмен веществ на усиленное потребление энергии, «сопровождая» эффекты симпатической НС и адреналина. Глюкокортикоиды, кроме того, тормозят активность иммунной системы и развитие воспаления, что позволяет использовать их как противовоспалительные препараты.
Выделение глюкокортикоидов усиливает кортикотропин = адренокортикотропный гормон (АКТГ или АСТН). Выделение АКТГ активирует кортиколиберин (CRH). Кортизол тормозит выброс АКТГ и CRH.
АКТГ (АСТН) состоит из 39 аминокис-лот. Его фрагменты длиной 7-10 а/к способны проникать в ЦНС, оказывая ноотропное действие, улучшая обуче-ние и память, снижая проявления депрессивности (препарат СЕМАКС). Кортиколиберин (CRH) стимулирует двигательную активность и эмоциональные проявления; снижает пищевую и половую мотивации. В последнее время система CRH - АКТГ – глюкокортикоиды интенсивно исследуется в связи с возможностями управления весом организма.
7-2. Синтез, взаимопревращения и инактивация глутаминовой кислоты и ГАМК. Значение аминокислот для деятельности мозга.
Медиаторы-аминокислоты являются главными медиаторами ЦНС.
Глутаминовая кислота (Glu) – главный возбуждающий меди-атор (около 40% всех нейронов); проведение основных потоков информации в ЦНС (сенсорные сигналы, двигат. команды, память).
Гамма-аминомасляная кислота (ГАМК) – главный тормозный медиатор (также около 40% всех нейронов); запрет проведения «ненужной» информации (внимание, двигательный контроль).
Глицин – вспомогательный тормозный медиатор (менее 1%; основная функция – торможение мотонейронов).
Нормальная деятельность ЦНС обеспечивается тонким балансом Glu и ГАМК.
При нарушении баланса Glu и ГАМК:
синдром дефицита внимания и гиперактивности детей (СДВГ);
повышенная нервозность и тревожность взрослых;
нарушения сна, бессонница;
эпилепсия (чаcто врожденная патология, у 0.5% населения).
В клинических целях используют агонисты ГАМК и антагонисты Glu. Антагонисты ГАМК и агонисты Glu – яды, вызывающие судороги (конвульсанты).
Глутаминовая кислота. Пищевая аминокислота – входит в состав белков пищи и белков нашего тела; самая распространенная: потребляем с едой 5-10 г в сутки. Стандартная структура; радикал -СН2-СН2-СООН. В водных растворах существует в ионизированном виде, то есть в форме отрицательно заряженного остатка глутамата («глютамата»).
Для синтеза необходимы: a-кетоглутаровая кислота (промежуточный продукт окисления глюкозы в цикле Кребса; в больших количествах образуется в митохондриях); аминогруппа любой а/к, полученной с пищей; фермент из группы аминотрансфераз. Такой синтез идет во всех клетках организма.
Другой («быстрый») путь синтеза, характерный для нейронов: взаимные превращения Glu и очень сходной пищевой а/к глутамина: замена второй ОН-группы Glu на аминогруппу NH2.
глутамин Þ Glu (фермент глутамин синтетаза;
в пресинаптических окончаниях)
Glu Þ глутамин (фермент глутаминаза; при
инактивации Glu)
Для синтеза необходимы: a-кетоглутаровая кислота (промежуточный продукт окисления глюкозы в цикле Кребса; в больших количествах образуется в митохондриях);
аминогруппа любой а/к, полученной с пищей; фермент из группы аминотрансфераз. Такой синтез идет во всех клетках организма.
Во всех тканях организма (в т.ч. в мозге) очень много Glu. В связи с этим долгое время не могли поверить, что столь распространенное вещество является медиатором ЦНС. Однако это именно так. Дело в том, что пищевой глутамат почти не преодолевает ГЭБ, и для выпол-нения медиаторных функций Glu синтезируется непосредственно в пресинаптических окончениях из глутамина; определенный вклад вносит также образование Glu из a-кетоглутаровой кислоты (a-KG).
После синтеза Glu загружается в везикулы (◄ ), выбрасывается в синаптическую щель при приходе ПД и влияет на рецепторы ( ↓↓↓ ), запуская ВПСП.
Введение Glu непосредственно в мозг (в желудочки) вызывает возбуждение ЦНС и судороги.
Сходные эффекты наблюдаются при отравлении агонистами Glu, часть из которых является токсинами растений. Пример: домоевая кислота; вырабатывается некоторыми одноклеточными водорослями; токсин накапливается в телах животных, поедающих фитопланктон (двустворчатые моллюски, некоторые рыбы) и способен отравлять птиц, млекопитающих, человека. Смертельные случаи: западное побережье Канады; «бешенство» птиц в Калифорнии (Дюморье, Хичкок).
Инактивация Glu: Из синаптический щели Glu l переносится в глиальные клетки, где превращается в глутамин (Gln) l (с помощью фермента глутаминазы). Глутамин затем может перемещаться в пресинаптическое окончание и вновь становиться Glu в митохондриях.Часть Glu возвращается из синаптической щели прямо в пресинаптич. окончание («обратное всасывание»).
ГАМК. Непищевая аминокислота: аминогруппа в 3-м (g) положении. Синтез – из глутаминовой кислоты за счет отщепления СО2(фермент глутамат декарбоксилаза).
ГАМК может использоваться в качестве медиатора, но может терять аминогруппу (фермент ГАМК-трансфераза) и быстро окисляться с выдел. энергии.
Именно для нейронов характерна следующая цепь реакций: глюкоза ® … ® a-кетоглутаровая кислота ® Glu ® ГАМК ® … ® энергия
ГАМК на 10% проходит ГЭБ. Однако при ее системном введении (таблетки «Аминалон») наблюдается не столько торможение ЦНС, сколько «питание» нейронов и улучшение их общего состояния (ноотропное действие ГАМК).
Инактивация ГАМК. В значительной мере сходна с инактивацией Glu: обратное всасывание ГАМК в пресинаптическое окончание либо всасывание глиальными клетками. В последнем случае ГАМК разрушается ферментом ГАМК трансферазой: аминогруппа ГАМК переносится на a-кетоглутаровую кислоту с образованием Glu. Далее Glu может превращаться в глутамин, который транспортируется в пресинаптическое окончание, опять становится Glu, а из Glu образуется ГАМК. Круг замкнулся.
Инактивация ГАМК происходит в основном путем обратного всасывания в пресинаптическое окончание и последующего превращения в глутаминовую кислоту. Реакцию эту осуществляет особый фермент ГАМК-трансфераза. Его блокаторами являются соли вальпроевой кислоты. Они оказывают транквилизирующее и противосудорожное действие. Вальпроаты особенно полезны при малых формах эпилепсии. Вызываемые ими побочные депрессантные изменения, как правило, минимальны.
7-3. Средний мозг: четверохолмие и реакция на новизну. Управление движениями глаз. Функции различных областей красного ядра и черной субстанции.
Движения глаз:
с каждым глазом связано по 6 мышц, управляемых III, IV и VI нервами;
два основных типа движений глаз – слежения и саккады (быстрые скачки);
в основе врожденные программы, но мы учимся ими управлять (вначале – произвольная коррекция, а затем – автоматизация);
тесты на рассматривание картинок – еще одно «окно в бессознательное».
(Чтение: [1] – скачок в начало строки; [2] мини-саккады (5-7 скачков вдоль строки, текст читается «в несколько приемов»).)
8-1. Щитовидная железа и эпифиз: выделяемые гормоны и их эффекты (в т.ч. действие на нервную систему). ЦНС и управление работой щитовидной железы и эпифиза.
Щитовидная железа: выделяет йод-содержащие гормоны тироксины, усиливающие обмен веществ (образование энергии) во всех клетках организма, в т.ч. в мозге
Выделение тироксинов (Т4 и Т3) усиливает тирео-тропный гормон передней доли гипофиза (TSH; тиреостимулирующий гормон). Гипоталамус, измеряя концентрацию тироксинов и TSH в крови, усиливает выделение статина (его роль играет дофамин) либо либерина (тиролиберина, TRH; является также либерином пролактина).
Тиролиберин активирует выброс TSH.
Опасен как дефицит, так и избыток тироксинов в организме.
При дефиците (например, из-за нехватки йода в пище) – снижение обмена веществ, вялось, депрессии («микседема»); у новорожденных – оставание умственного развития.
При избытке – нервозность, бессонница, повышенный аппетит и худоба, гиперактивность симпатичес-кой НС, «выпученные» глаза.
Причиной в обоих случаях могут быть аутоиммунные нарушения.
Влияние гормонов щитовидной железы ( из учебника): программирующие гормоны ( пр.участвуют в половом созревании), усиливают обмен веществ, стимулируя клеточное дыхание, повышают секрецию соматотропного гормона гипофиза, усиливают производство тепла организмом-термогенез
Гипофункция щитовидной железы-кретинизм (детство), микседема (взрослый)
Гиперфункция-базедова болезнь
Мелатонин – гормон эпифиза.
Синтезируется из триптофана (как и серотонин). «Гормон сонного состояния»: снижает активность обмена веществ во многих внутренних органах и ЦНС. Выделением управляют центры сна и бодрствования
На свету паравентрикулярные ядра гипоталамуса (PVN) через нейроны бокового рога серого вещества спинного мозга (ILC) и шейные симпатические ганглии (SCG) сдерживают выделение мелатонина. В темноте супра-хиазменные ядра (SCN) акти-вируют выделение мелатонина за счет того, что тормозят PVN с помощью GABA (т.е. ГАМК).
Мелатонин используется в
качестве лекарства при бессон-нице (облегчает засыпание)
Эпифиз — маленькая железа, массой всего 170 мг, являющаяся выростом крыши третьего желудочка мозга и расположенная между верхними буграми четверохолмия. Гормон эпифиза — мелатонин по своему химическому строению является модификацией медиатора ЦНС серотонина, который в свою очередь синтезируется из аминокислоты
триптофана. Секреция мелатонина уменьшается на свету и усиливается в темноте. Показано увеличение секреции этого гормона у слепых людей. Мелатонин обладает мембранной рецепцией и действует через систему G-белков на активность аденилатциклазы, подавляя ее. Под воздействием мелатонина происходят изменения в обмене черного пигмента — меланина, локализованного в коже, радужке, сетчатке, некоторых структурах мозга, в результате кожа светлеет, повышается чувствительность фоторецепторов сетчатки. Мелатонин участвует в обеспечении суточных ритмов человека, в том числе и ритмов секреции ряда гормонов. Мелатонин —
антигонадотропный гормон. Его секреция снижается при половом созревании, что стимулирует замыкание системы гипоталамус — гипофиз — гонады. Мелатонин обладает целым рядом воздействий на функции мозга. Так, увеличенное образование и секреция его в темноте может приводить к депрессии у лиц, вынужденных бодрствовать и работать в темное время суток. Повышенный уровень мелатонина индуцирует сонливость, вялость, может вызвать длительный глубокий сон. По-видимому, угнетая синтез некоторых факторов, усиливающих рост тканей, ускоряющих деление клеток, мелатонин может тормозить развитие опухолей.
8-2. Два типа рецепторов ацетилхолина (Ацх), их свойства. Агонисты и антагонисты рецепторов Ацх: примеры веществ и разнообразие эффектов.
Функции Ацх-рецепторов(всех)
Их функцию можно определить, как нормализующую тонус мозга (т.е. при утомлении активируют ЦНС, при перевозбуждении – успокаивают).
Агонисты, Антагонисты
Блокаторы ( на всякий случай )
Примеры блокаторов:
токсин малабарских бобов эзерин (физостигмин);
фосфорорганические инсекти-циды (хлорофос, дихлофос и т.п.; могут вызывать токсикоманию);
боевые нервно-паралитические газы (зарин, табун).
Пиридостигмин и сходные препараты, а также ряд агонистов рецепторов Ацх используются для лечения болезни Альцгеймера – самого распространенного нейродегенеративного заболевания, при котором первыми страдают Ацх-нейроны больших полушарий.
Прозерин и более мягко действующий пиридостигмин, соз-данные на основе эзерина, исполь-зуют при миастении (аутоим-мунное заболевание: антитела атакуют никотиновые ре-цепторы; развивается мышечная слабость, вялость, быстрая утомляемость; характерн. признак – опущенные веки). Основное лечение – иммуносупрессия
8-3. Первичная слуховая кора и тонотопия. Вторичная и третичная слуховая кора: опознавание слуховых образов разной степени сложности.
Слуховая кора:
Первичная – височная доля, по границе боковой борозды.
Завершение частотно-амплитудного анализа, наиболее точная тонотопическая карта.
В передних зонах – низкие частоты; особенно детально анализируется речевой диапазон – 50-500Гц
Ниже расположена вторичная слуховая кора – опознавание звуковых образов как совокупности частот (шумы, «звуки природы» и т.п.).
Как правило, свойства нейронов этой области – результат обучения.
Невербальная коммуникация (плач, смех и т.п.) опознается врожденно.
Задняя часть височной доли – третичная слуховая кора: узнавание наиболее сложных слуховых образов (музыки, речи). Узнавание речи на слух - зона Вернике)
Основная проблема: нужно реагировать не на частоты и их совокупность, а общую форму спектра (вне зависимости от тональности).
Зона Брока – речедвигательный центр.
Тонотопическая карта:
Улитка – частотно-амплитудный анализатор («на выходе» возникает спектр звука). В ЦНС – тонотопические карты.
Завершение частотно-амплитудного анализа, наиболее точная тонотопическая карта.
9-1. Половые железы; половые гормоны и их эффекты (в т.ч. действие на нервную систему). ЦНС и управление работой половых желез.
Кроме того, передн. доля гипофиза вырабатывает тропные гормоны:
тиреотропный (тиреостимулирующий – TSН; влияет на щитовидную железу);
адренокортикотропный (АСТН; влияет на кору надпочечников);
гонадотропные FSH и LH влияют на половые железы мужчин и женщин;
соматотропный (гормон роста) – на рост тела, его общий размер
Гипоталамус: Статины и либерины выделяются в кровь нейроэндокринными клетками серого бугра, измеряющими содержа-ние в крови «конечного» гормона (ти-роксина, половых гормонов и др.).
Два следующих тропных гормона(гипофиз) регулируют работу половых желез:
LH и FSH – лютеинизирующий и фолликулостимулирующий гормоны («гонадотропины»).
Несмотря на названия, в равной мере влияют на семенники мужчин и яичники женщин. Их функции:
активация синтеза и выделения половых гормонов;
стимуляция образования и созрева-ния половых клеток – сперматозои-дов и яйцеклеток (в пузырьках-фол-ликулах, далее следует овуляция).
Рилизинг-фактор гонадотропинов – пептид люлиберин (GnRH).
В ЦНС он активирует половое поведение, повышает эмоциональность, улучшает обучение.
Главными мужскими половыми гормонами являются тестостероны, тормозящие (ограничивающие) выделение люлиберина, LН и FSH. Тестостероны активируют спермато-генез, у эмбриона – направляют развитие половой системы по мужскому типу; позже – определяют формирование мужских вторичных половых признаков.
(Вторичные половые признаки: борода, склонность к облысению, усиленный рост волос на теле, низкий голос, более мощное развитие мышц, склонность к отложению запасов жира в области живота, слабое развитие молочных желез.)
В ЦНС тестостероны влияют на половое влечение (либидо), половое поведение, агрессивность.
Главными женскими половыми гормонами являются прогестерон и эстрогены.
Прогестерон обеспечивает состояние готовности матки к беременности (содержание в крови максимально между овуляцией и менструацией).
Эстрогены «подталкивают» созрева-ние яйцеклеток, усиливают сокраще-ния яйцеводов и др. Они же опреде-ляют формирование женских вторич-ных половых признаков.( Вторичные половые признаки:
высокий голос, отсутствие бороды, склонность к отложению запасов жира в области бедер, развитие молочных желез и др)
В ЦНС эстрогены влияют на половое влечение и половое поведение.
9-2. Синтез глутаминовой кислоты (ГлК) в нервных клетках. Разнообразие рецепторов к ГлК; NMDA-рецепторы. Примеры и значение агонистов и антагонистов ГлК.
Глутаминовая кислота (Glu) – главный возбуждающий меди-атор (около 40% всех нейронов); проведение основных потоков информации в ЦНС (сенсорные сигналы, двигат. команды, память).
Глутаминовая кислота.
Пищевая аминокислота – входит в состав белков пищи и белков нашего тела; самая распростра-
ненная: потребляем с едой 5-10 г в сутки.
Стандартная структура; радикал -СН2-СН2-СООН.
В водных растворах существует в ионизированном виде, то есть в форме отрицательно заряженного остатка глутамата («глютамата»).
Агонисты Glu:
Введение Glu непосредственно в мозг (в желудочки) вызывает возбуждение ЦНС и судороги.
Сходные эффекты наблюдаются при отравлении агонистами Glu, часть из которых является токсинами растений. Пример: домоевая кислота ; вырабатывается некоторыми одноклеточными водорослями; токсин накапливается в телах животных, поедающих фитопланктон (двустворчатые моллюски, некоторые рыбы) и способен отравлять птиц, млекопитающих, человека. Смертельные случаи: западное побережье Канады; «бешенство» птиц в Калифорнии).
Глутамат, помимо действия на рецепторы постсинаптической мембраны, способен влиять на вкусовые клетки-рецепторы языка («вкус белка»). Существуют особые клетки-рецепторы для сладкого, горького, кислого, солёного и глутамата. На мембране – белки-рецепторы к соответствующим веществам. Их активация ведёт к входу Ca2+, выбросу Glu (как медиатора) и возникновению ПД в волокнах вкусовых нервов (VII и IX).
Umami – яп. «мясной»; термин для описания особого «бульонного» вкуса морской капусты, соевого соуса, сыров (пармезан), грибов и т.п. В начале XXв. было показано, что это – вкус глутамата. С тех пор глутамат и его производные всё шире используются как «усилители вкуса» (E620 и др.). Избыток Glu (10г и более одномоментно) может вести к головной боли, потоотделению, сердцебиению («синдром китайского ресторана», не путать с пищевой аллергией).
9-3. Дыхательный центр продолговатого мозга и моста, принципы его функционирования. Роль нейронов-пейсмекеров, механорецепторов легких, хеморецепторов.
Среди нейронов вдоха ключевую роль играют клетки-пейсмекеры, находящиеся в ядрах нижней части ромбовидной ямки.
Врожденно обусловленная частота их активации у человека: примерно 1 волна в 5 сек (12 раз в мин = частота дыхания во сне
От клеток-пейсмекеров (генераторов ритма) ПД передаются к другим дыхат. нейронам и мотонейронам шейных и грудных сегментов спинного мозга, запускающим сокращение диафрагмы и межреберных мышц.
Еще о дыхательных центрах:
инспираторные нейроны – это не только пейсмекеры, но и клетки, «зацикливающие» ПД по замкнутому контуру, что дает возможность оказывать на мотонейроны стабильное активирующее действие;
хеморецепторы СО2 (и Н+) представляют собой нейроны на дне ромбовидной ямки; активируются в основном при физической нагрузке;
хеморецепторы О2 расположены в каротидном синусе (область разветвления на наружную и внутреннюю сонные артерии); важны, например, при подъеме в горы (на высоте 5 км воздуха в 2 раза меньше);
пробуждение приводит к активации пейсмекеров центрами бодрствования, и частота дыхания возрастает до 16-18/мин; при эмоциях и физической нагрузке – до 30-40/мин.
Передача инфор-мации о содержа-нии О2 в крови идет по волокнам IX нерва (кроме того, на схеме показана область, где распо-ложены рецепторы растяжения аорты; сигнал идет по волокнам Х нерва).
10-1. Потенциал покоя (ПП) нервных клеток. Роль Na+-K+-насоса и постоянно открытых ионных каналов. Уравнение Нернста, связь ПП с диффузией ионов Na+ и К+.
Сигнал по мембране нейрона передаётся в виде коротких электрических импульсов – потенциалов действия (ПД). Этот процесс можно сравнить с передачей информации с помощью включения и выключения фонарика (ПД= «вспышка света»).
Но для того, чтобы фонарик работал, нужна батарейка – источник электрической энергии. В случае нейрона таким источником является постоянный внутриклеточный заряд – потенциал покоя (ПП).
•Потенциал покоя нейрона – его постоянный отрицательный заряд, равный в среднем –70 мВ. Измерить ПП можно с помощью тончайшей, особым образом вытянутой стеклянной трубочки-микроэлектрода. Его кончик имеет диаметр <1 мкм, что позволяет практически без повреждения мембрану клетки. Микроэлектрод (в т.ч. канал внутри кончика) заполнен раствором соли, проводящим электрический ток. Это позволяет оценить, сравнить заряд цитоплазмы нейрона с зарядом межклеточной среды.
•Наличие ПП – результат жизнедеятельности нейрона, совместного функционирования всех биополимеров и органоидов клетки; погибший нейрон быстро теряет ПП. Первопричина ПП – разность концентраций ионов K+ и Na+ внутри и снаружи нейрона. Эту разность создаёт работа особого белка-насоса Na+-K+-АТФазы (Na+-K+-насоса).
•Na+-K+-АТФаза обменивает находящиеся внутри клетки ионы Na+ на захваченные в межклеточной среде ионы K+, затрачивая значительное количество АТФ.
В результате работы Na+-K+-АТФазы в нейроне оказывается примерно в 10 раз меньше Na+ и в 30 раз больше K+, чем в межклеточной среде.
• K+ “out” : K+ “in” = 1 : 30
• Na+ “out” : Na+ “in” = 10 : 1
Несмотря на всё это, до момента созревания (происходит на 2-3 месяце эмбрионального развития) нейрон не имеет заряда, и количество положительных (прежде всего, K+) и отрицательных ионов в его цитоплазме примерно одинаково. Признак созревания – появление на мембране нейрона постоянно открытых K+-каналов (определяется включением соответствующего гена). В результате становится возможной диффузия K+ из клетки.
• Как долго идёт диффузия K+ из нейрона?
Очевидный вариант («до выравнивания концентраций») неверен, поскольку двигаются заряженные частицы, и выход K+ сопровождается накоплением в цитоплазме отрицательного заряда. Этот отрицательный заряд мешает диффузии и в конце концов останавливает её. Возникает состояние «динамического равновесия»: число ионов K+, покинувших клетку благодаря диффузии = числу ионов K+, втянутых в клетку отрицательным зарядом цитоплазмы.
ПП – это отрицательный заряд цитоплазмы, останавливающий диффузию ионов K+ в межклеточную среду.
•«Уравнение Нернста»: ПП ~ lg (K+ “out”/K+ “in”)
Коэффициент пропорциональности равен 61.5 мВ для Т=36.6С; логарифм равен –1.48 (для соотношения концентраций 1/30).
С учётом этого ПП = -91 мВ («равновесный потенциал» для K+)
Такой вход Na+ ведёт к сдвигу заряда цитоплазмы вверх и частичной потере ПП (отсюда название – «ток утечки Na+»).
В реальной клетке ПП находится ближе к нулю (в среднем –70мВ). Причина: существование небольшого количества постоянно открытых каналов для ионов Na+. Избыток ионов Na+ в межклеточной среде, а также их притяжение к отрицательно заряженной цитоплазме приводят к входу Na+ в клетку.
•Ограничивает вход Na+,
• во-первых, малое число постоянно открытых Na+-каналов;
• во-вторых, работа Na+-K+-АТФазы, которая «откачивает» Na+, обменивая его на K+.
•В целом ПП зависит от 3х главных факторов:
• диффузии K+ из клетки ;
• диффузии Na+ в клетку ;
• работы Na+-K+-АТФазы.
Диффузия K+ из клетки определяется разностью концентраций K+ “out” и K+ “in”.
Если увеличить K+ “out”, то разность концентраций станет меньше, диффузия – слабее, и для её остановки потребуется не столь значительный ПП (произойдёт сдвиг заряда цитоплазмы вверх до достижения новой точки равновесия).
Если снизить K+ “out” , то разность концентраций станет больше, диффузия – сильнее, и для её остановки потребуется более значительный ПП (сдвиг заряда цитоплазмы).
Диффузия Na+ в клетку зависит, прежде всего, от концентрации постоянно открытых Na+-каналов на мембране. Эта величина, в свою очередь, является стабильным свойством конкретного нейрона. Чем больше таких каналов, тем ПП ближе к нулю, чем меньше – тем ПП ближе к уровню –91мВ.
Чем ближе ПП к нулю, тем возбудимее нейрон (такие нужны, например, в центрах бодрствования); чем ближе ПП к уровню –91 мВ, тем ниже возбудимость (минимальна в центрах, запускающих движения).
•Работа Na+-K+-АТФазы может быть нарушена химическими веществами, например, токсином одной из тропических лиан строфантином.
В этом случае ток утечки Na+ не будет полностью компенсироваться и ПП сместится в сторону нуля (степень смещения зависит от дозы токсина = доля заблокированных насосов).
Большая доза токсина настолько нарушает работу Na+-K+-АТФаз, что ПП теряется (происходит разрядка батарейки «фонарика»).
• Аналогия : Na+-K+-АТФаза -- «зарядное устройство» нейрона.
• Заключительная аналогия: лодка на поверхности водоёма.
Уровень воды = нулевой уровень; уровень бортов над водой= ПП (зависит от «веса лодки» = разность концентраций K+ во внешней среде и цитоплазме).
Ток утечки Na+ = отверстия в лодке, через которые втекает вода и снижает абсолютное значение ПП (приближая его к нулю).
Na+-K+-АТФаза – ковш, которым вычерпываем воду, удерживая лодку на плаву («поломка ковша» строфантином приведёт к тому, что лодка утонет)
10-2. Никотин и алкоголь: механизмы действия на организм и ЦНС; причины и последствия формирования привыкания и зависимости.
Алкоголь:
Никтоин:
Известны 2 типа рецепторов к Ацх:
первый из них реагирует на Ацх и агонист никотин (токсин табака);
второй реагирует на Ацх и агонист мускарин (токсин мухомора).
Никотин, как агонист рецепторов Ацх, защищает табак от поедания насекомыми; для человека – слабый «разрешенный» наркотик.
10-3. Гипоталамус как эндокринный центр: реакция на концентрацию гормонов в крови; выделение либеринов и статинов, конкретные примеры их функций.
Промежуточный мозг:
гипофиз и эпифиз (эндокринные железы);таламус,гипоталамус, субталамус
Гипоталамус является главным центром эндокринной и вегетативной регуляции, а также главным центром биологических потребностей (и связанных с ними эмоций).
Ядра, регулирующие деятельность эндокринной системы: прежде всего, это паравентрикулярное и супраоптическое.
Эти ядра содержат нейроэндокринные клетки, аксоны которых идут в заднюю долю гипофиза и здесь выбрасывают гормоны в кровь. Другие нейроны, рас-положенные в основном в средней части гипоталамуса («серый бугор») выделяют в сосудистое сплетение гормоны, регулирующие работу передней доли гипофиза.
Большинство гормонов гипоталамуса и гипофиза – белковые и пептидные молекулы. В гипоталамусе они син-тезируются в телах нейросекреторн. клеток (вырезаются из белков-предшественников), загружаются в везикулы и переносятся по аксонам к месту экзоцитоза.
Далее гормоны выделяются в межклеточную среду с наружной стороны эпителиальных клеток капилляров, путем диффузии попадают в кровь и с кровью доставляются к клеткам-мишеням
Действие гормонов на клетки-мишени развивается обычно теми же путями, что и в случае медиаторов: гормон действует на специфические рецепторы, запуская (через G-белки) синтез вторичных посредников, которые влияют на активность белков-насосов, ферментов, включают и выключают гены (на уровне ДНК) и т.д.
В ряде случаев гормон действует на клетки другой эндокринной железы, управляя ее активностью («тропные гормоны», характерны для передней доли гипофиза).
В ряде случаев гормон действует на клетки другой эндокринной железы, управляя её активностью («тропные гормоны», характерны для передней доли гипофиза).
Рецепторы гормонов имеются и на нервных клетках, благодаря чему эндокринная и нервная системы тесно взаимодействуют.
Гормоны, которые синтезируются в гипоталамусе(парвентрикулярное и супраоптическое ядра) и выбрасываются в кровь в задней доле гипофиза: Это пептиды
• вазопрессин (антидиуре-тический гормон – ADH; влияет на почки)
Основной эффект вазопрессина: усиление обратного всасывания воды в почках (точнее, в нефронах; анти-диурез).
Кроме того, он сужает сосуды («вазопрессор»).
В ЦНС вазопрессин и его фрагменты в очень низких дозах улучшают обучение и память (перспективные ноотропы).
Вазопрессин выделяется при повышении концентрации NaCl в крови: сигнал для почек «экономить воду»; параллельно возникает чувство жажды.
• окситоцин (матка, молочная железа).
Главные эффекты окситоцина:
запуск сокращений гладкомышечных клеток матки (роды) и протоков молочной железы (лактация; не путать с действием пролактина, усиливающим образование молока).
В ЦНС окситоцин и его фрагменты противодействуют эффектам вазопрессина, ухудшая обучение и память.
Как и пролактин, окситоцин выделяется в ходе акта сосания (при механической стимуляции соска; нервно-эндокринная дуга).
Переходим к гормонам передней доли гипофиза. Их существенно больше; это уже знакомые нам пролактин и опиоидные пептиды (эндорфины; регуляция уровня болевой чувствительности).
Кроме того, в передняя доля гипофиза вырабатывает тропные гормоны:
тиреотропный (тиреостимулирующий – TSН; влияет на щитовидную железу);
адренокортикотропный (АСТН; влияет на кору надпочечников);
FSH и LH влияют на половые железы мужчин и женщин;
гормон роста (соматотропный) – на рост тела, его общий размер.
•Выброс каждого из гормонов передней доли гипофиза регулируется гормонами гипоталамуса («рилизинг»-факторы), которые могут активировать секрецию гипофиза (либерины) либо тормозить ее (статины). Так, дофамин является статином для пролактина и некоторых тропных гормонов.
•Статины и либерины выделяются в кровь нейроэндокринными клетками серого бугра, измеряющими содержание в крови «конечного» гормона (тироксина, половых гормонов и др.).
Избыток конечного гормона ведет к выбросу статина и снижению секреции гипофизом тропного гормона. Если конечного гормона в крови мало, то усиливается выброс соответствующего либерина (и тропного гормона).
Наличие таких отрицательных обратных связей позволяет поддерживать стабильное содержание в крови многих важнейших гормонов.
• Начнем со щитовидной железы. Она выделяет йодсодержащие гормоны тироксины, усиливающие обмен веществ (образование энергии) во всех клетках организма, в т.ч. в мозге.
Выделение тироксинов (Т4 и Т3) усиливает тиреотропный гормон передней доли гипофиза (TSH).
Гипоталамус, измеряя концентрацию тироксинов в крови, усиливает выделение либо статина (его роль играет дофамин) либо либерина (тиролиберина, TRH; является также либерином пролактина).
Тиролиберин активирует выброс TSH.
Опасен как дефицит, так и избыток тироксинов в организме.
При дефиците (например, из-за нехватки йода в пище) – снижение обмена веществ, вялость, депрессии («микседема»); у новорожденных – оставание умственного развития.
При избытке – нервозность, бессонница, повышенный аппетит и худоба, гиперактивность симпатической НС, «выпученные» глаза.
Причиной в обоих случаях могут быть аутоиммунные нарушения.
• Тиролиберин (трипептид Glu-His-Pro) значимо влияет на работу ЦНС.
Он «дополняет» действие тироксинов: увеличивает уровень бодрствования, оказывает антидепрессантное действие, усиливает работу дыхательного центра (в клинике: введение недоношенным детям).
• Соматотропный гормон (гормон роста – GH).
Как тропный гормон, активирует выделение печенью IGF-1 (иммуно-подобного фактора роста) и совместно с ним определяет рост скелета, мышц и конечный рост (размер тела) человека.
Гипоталамус оценивает концентрацию гормона роста и IGF-1, изменяя баланс между выделением соответствующих статина (соматостатина) и либерина (соматолиберина – GHRH = соматотропин-рилизинг фактор).
Нарушение работы этой системы ведет к карликовости; избыточная активность – к гигантизму.
Акромегалия – результат резкого увеличения продукции соматотропного гормона в зрелом возрасте (лишь часть органов способна продолжать рост: гипертрофия сердца, хрящевых тканей и др.).
•Влияния на ЦНС соматостатина: снижение пищевой мотивации, уровня эмоциональности и болевой чувствительности, небольшое снижение уровня бодрствования.
Соматостатин оказывает тормозящее действие на ЖКТ, подавляет активность многих других внутренних органов («всеобщий ингибитор»).
11-1. Постоянно открытые и электрочувствительные ионные каналы: сравнение свойств, разнообразие, функции в синапсах, нервных и мышечных клетках.
Сигнал по мембране нейрона передаётся в виде коротких электрических импульсов – потенциалов действия (ПД). Этот процесс можно сравнить с передачей информации с помощью включения и выключения фонарика (ПД= «вспышка света»).
Но для того, чтобы фонарик работал, нужна батарейка – источник электрической энергии. В случае нейрона таким источником является постоянный внутриклеточный заряд – потенциал покоя (ПП).
Потенциал покоя нейрона – его постоянный отрицательный заряд, равный в среднем –70 мВ. Измерить ПП можно с помощью тончайшей, особым образом вытянутой стеклянной трубочки-микроэлектрода. Его кончик имеет диаметр <1 мкм, что позволяет практически без повреждения мембрану клетки. Микроэлектрод (в т.ч. канал внутри кончика) заполнен раствором соли, проводящим электрический ток. Это позволяет оценить, сравнить заряд цитоплазмы нейрона с зарядом межклеточной среды.
Наличие ПП – результат жизнедеятельности нейрона, совместного функционирования всех биополимеров и органоидов клетки; погибший нейрон быстро теряет ПП. Первопричина ПП – разность концентраций ионов K+ и Na+ внутри и снаружи нейрона. Эту разность создаёт работа особого белка-насоса Na+-K+-АТФазы (Na+-K+-насоса).
Na+-K+-АТФаза обменивает находящиеся внутри клетки ионы Na+ на захваченные в межклеточной среде ионы K+, затрачивая значительное количество АТФ.
В основе этих процессов – открывание и закрывание электрочувствительных Na+- и К+-каналов.
Эти каналы имеют створки, реагирующие на изменение заряда внутри нейрона и открывающиеся, если этот заряд становится выше -50 мВ.
Если заряд внутри нейрона вновь ниже -50 мВ – створка закрывается, т.к. положительные заряды, расположенные на ней, притягиваются к отрицательно заряженным ионам цитоплазмы.
Положительные заряды створки – это заряды аминокислот, входящих в состав соответствующей молекулярной петли белка-канала.
Открытие электрочувствительного Na+-канала «разрешает» вход Na+ в клетку. Открытие электрочувствительного К+-канала «разрешает» выход К+ из клетки.
Na+-каналы открываются очень быстро после стимула и самопроизвольно закрываются примерно через 0.5 мс.
К+-каналы открываются медленно – в течение примерно 0.5 мс после стимула; закрываются они в большинстве своем к моменту снижения заряда нейрона до уровня ПП. Именно разная скорость открытия Na+-каналов и К+-каналов позволяет возникнуть сначала восходящей, а затем – нисходящей фазе ПД.
(сначала ионы Na+ вносят в нейрон положительный заряд, а затем ионы К+ выносят его, возвращая клетку в исходное состояние). Для закрытия Na+-каналов на пике ПД служит дополнительная (внутриклеточная, инактивационная, И-) створка – h-ворота. Вторая створка (активационная, А-) – m-ворота.
Реполяризация: абсолютная рефрактерность (полная нечувствительность к стимуляции из-за закрытой h-створки)
Гиперполяризация:относительная рефрактерность (пороговый стимул >, чем обычно)
Поскольку К+-каналы начинают закрываться довольно поздно (вслед за проходом уровня -50 мВ), заряд нейрона после ПД нередко опускается ниже ПП (следовая гиперполяризация, относит. рефрактерность).
Вершина ПД («овершут») – момент равенства токов натрия и калия; она не м.б. выше равновесного потенциала для натрия, который составляет 61.5 мВ при соотношении Na+out : Na+in = 10 : 1 (по уравнению Нернста).
тетродотоксин –яд рыбы фугу (аминогруппа работает как «пробка» для Na+-канала)
ТЕА – тетраэтиламмоний: работает как «пробка» по отношению к К+-каналу.
В результате восходящая фаза ПД изменяется мало, нисходящая – затягивается до 50 и > мс (реполяризация происходит за счет постоянно открытых К+-каналов, которых примерно в 100 раз <, чем электрочувствительных); ТЭА вызывает глубокую потерю сознания.
Na+-K+-АТФаза постоянно откачивает из клетки избыток Na+ и возвращает назад K+. Без этого нейрон потерял бы ПП уже через несколько сотен ПД. Важно также, что чем > проникло в клетку Na+, тем активнее работает насос. Если ПД возник хотя бы в одной точке мембраны нейрона – он распространяется по всей мембране.
Причина: деполяризация в точке появления ПД играет роль запускающего (надпорогового, около 100 мВ) стимула по отношению к соседним точкам. Это сходно с «кругами на воде», а точнее – с горением бенгальского огня.
Скорость такого распространения низка и не превышает у человека 1-2 м/с (диаметр аксона 1-2 мкм). ДП от исходной точки распространяется во все стороны и, убегая по аксону, запускает выброс медиатора
Открытие Na+-каналов «разрешает» вход Na+ в клетку; развивается волна деполяризации – «возбуждающий постсинаптический потенциал» (ВПСП).
Открытие K+-каналов «разрешает» выход K+ из клетки; развивается волна гиперполяризации – «тормозный постсинаптический потенциал» (ТПСП).
Управление работой сердца.
С клетками-пейсмекерами («водители ритма») контактируют как симпатические, так и парасимпатические волокна, выделяя Ne и Ацх, они регулируют соотношение постоянно открытых Na+- и K+-каналов, управляет частотой сердцебиений. С «рабочими» клетками сердца контактируют только симпатические волокна; выделяя Ne, они увеличивают открывание Ca2+ каналов. В результате на фазе плато в мышечную клетку входит больше Ca2+, сокращение усиливается. Стимуляция симпатических нервов: частота разрядов пейсмекера растёт за счёт увеличения Na+- проводимости и снижения K+-проводимости.
!! Для возникновения потенциала покоя также необходимо существование в мембране нервных клеток открытых ионных каналов, в результате чего мембрана становится проницаемой для определенных ионов, получающих возможность свободно перемещаться между цитоплазмой и межклеточной средой. Ключевое значение для появления ПП имеют постоянно открытые (проточные) К+-каналы. Они представляют собой белковые молекулы, проход внутри которых специфически настроен на пропуск ионов К+.
!! Ионы, участвующие в генерации ПД, те же, что и в случае потенциала покоя — Na+ и К+. При развитии ПД натрий входит в нейрон, а калий выходит. Ионные каналы, через которые они движутся, относятся к отдельному классу — потенциал-зависимым (электрочувствительным) ионным каналам.
Запуск импульсной активности в нервной системе осуществляют два основных фактора.
Первый из них — стимулы, действующие на чувствительные клетки сенсорных систем и изменяющие проницаемость их мембраны. Это приводит к развитию особых рецепторных потенциалов и в итоге — к генерации ПД.
Второй фактор — выделение медиатора из пресинаптического окончания. Попав в синаптическую щель, медиатор воздействует на постсинаптическую мембрану, возбуждая или тормозя следующий нейрон. Процессы подобного возбуждения или торможения связаны с деятельностью еще одного типа ионных каналов — лиганд-зависимых (хемочувствительных). Они находятся на мембране, непосредственно окружающей синаптический контакт. Обычно они закрыты. Их открывание происходит лишь при появлении медиатора, несущего сигнал химического вещества (отсюда термин «хемочувствительные»). Лиганд-зависимые каналы можно разделить на три основных класса: избирательно проницаемые по отношению к ионам Na+, ионам К+ и ионам С1~. Отрывание первых из них приведет к входу в клетку ионов Na+ и деполяризации нейрона (рис. 3.14, а), во время которой разность потенциалов на мембране оказывается приближенной к порогу запуска ПД. В этот момент меньший, чем обычно, стимул может вызвать реакцию нейрона, т. е. нервная клетка находится в относительно возбужденном состоянии. В связи с этим локальная деполяризация мембраны под действием медиатора была названа возбуждающим постсинаптическим потенциалом (ВПСП). Медиаторы, вызывающие ВПСП, отнесены к группе возбуждающих медиаторов. Открывание хемочувствительных С1~-каналов приводит к входу в клетку ионов хлора; открывание К+-каналов — к выходу ионов калия.
11-2. Типы и подтипы рецепторов норадреналина (НА). Агонисты и антагонисты рецепторов НА: примеры, разнообразие эффектов, практическое применение.
Рецепторы:
Ослабить деятельность сердца при гипертонии наиболее эффективно можно с помощью
Б1-антагонистов (атенолол) и антагонистов Сa2+-каналов (верапамил).
11-3. Тропные гормоны гипофиза: регуляция выделения, общая характеристика, функции, конкретные примеры. Влияние тропных гормонов на работу ЦНС.
Промежуточный мозг:
гипофиз и эпифиз (эндокринные железы);таламус,гипоталамус, субталамус
Гормоны гипофиза:
Тиреокальцитонин-отложение кальция в костной ткани
Тиреотропный гормон-регуляция работы щитовидной железы
Соматотропный гормон-регуляция роста и дифференцировки системы орагнов, органов, клеток
Соматотропный гормон (гормон роста – GH).
Как тропный гормон, активирует выделение печенью IGF-1 (инсулино-подобного фактора роста) и совместно с ним определяет рост скелета, мышц и конечный рост (размер тела) человека.
Гипоталамус оценивает концентрацию гормона роста и IGF-1, изменяя баланс между выделением соответствующих статина (соматостатина) и либерина (соматолиберина – GHRH = соматотропин-рилизинг фактор).
Нарушение работы этой системы ведет к карликовости; избыточная активность – к гигантизму.
Гонадотропный гормон-регуляция работы половых желез
LH и FSH – лютеинизирующий и фолликулостимулирующий гормоны («гонадотропины»).
Несмотря на названия, в равной мере влияют на семенники мужчин и яичники женщин. Их функции:
активация синтеза и выделения половых гормонов;
стимуляция образования и созрева-ния половых клеток – сперматозои-дов и яйцеклеток (в пузырьках-фол-ликулах, далее следует овуляция).
Рилизинг-фактор гонадотропинов – пептид люлиберин (GnRH). В ЦНС он активирует половое пове-дение, повышает эмоциональность, улучшает обучение
Липотропин-регуляция обменов жиров
Меланоцитостимулирующий г-н
Теперь речь пойдет о ядрах(гипоталамуса), регулирующих деятельность эндокринной системы: прежде всего, паравентрикулярном и супраоптическом.
Эти ядра содержат нейроэндокринные клетки, аксоны которых идут в заднюю долю гипофиза и здесь выбрасывают гормоны в кровь. Другие нейроны, рас-положенные в основном в средней части гипоталамуса («серый бугор») выделяют в сосудистое сплетение гормоны, регулирующие работу передней доли гипофиза.
Переходим к гормонам передней доли гипофиза. Их существенно больше; это уже знакомые нам пролактин и опиоидные пептиды (эндорфины; регуляция уровня болевой чувствительности).
Кроме того, передн. доля гипофиза вырабатывает тропные гормоны:
тиреотропный (тиреостимулирующий – TSН; влияет на щитовидную железу);
адренокортикотропный (АСТН; влияет на кору надпочечников);
гонадотропные FSH и LH влияют на половые железы мужчин и женщин;
соматотропный (гормон роста) – на рост тела, его общий размер.
Выброс каждого из гормонов передней доли гипофиза регулируется гормонами гипоталамуса («рилизинг»-факторы), которые могут активировать секрецию гипофиза (либерины) либо тормозить ее (статины). Так, дофамин является статином для пролактина и некоторых тропных гормонов (см. лекцию о DA и 5-НТ).
Выделение тироксинов(щитовидка) (Т4 и Т3) усиливает тирео-тропный гормон передней доли гипофиза (TSH; тиреостимулирующий гормон). Гипоталамус, измеряя концентрацию тироксинов и TSH в крови, усиливает выделение статина (его роль играет дофамин) либо либерина (тиролиберина, TRH; является также либерином пролактина).
Тиролиберин активирует выброс TSH.
Акромегалия – результат резкого увеличения продукции соматотроп-ного гормона в зрелом возрасте (лишь часть органов способна продолжать рост: гипертрофия сердца, хрящевых тканей и др.).
Влияния на ЦНС соматостатина: снижение пищевой мотивации, уровня эмоциональности и болевой чувствительности, небольшое снижение уровня бодрствования.
Соматостатин оказывает тормозящее действие на ЖКТ, подавляет активность многих других внутренних органов («всеобщий ингибитор»).
12-1. Нейроны-пейсмекеры, их свойства, функции, регуляция активности; участие в работе дыхательных и локомоторных центров. Клетки-пейсмекеры сердца.
Интересным вариантом генерации ПД являются пейсмекерные нейроны (клетки-пейсмекеры). Они обладают большой постоянной проницаемостью мембраны для ионов Na+. В результате у клеток-пейсмекеров не существует стабильного ПП. Разность потенциалов на их мембране постоянно стремится вверх. Когда она достигает порогового значения, происходит запуск ПД.
После ПД заряд внутри клетки оказывается на довольно низком уровне, ПП вновь растет и запускается следующий ПД, в целом же наблюдается ритмический рисунок разрядов. Рост заряда 1 внутри клетки, связанный с большим током утечки Na+, приводит к периодической самопроизвольной генерации потенциалов действия. Нейроны-пейсмекеры находятся в дыхательном центре продолговатого мозга, сходные же свойства имеют клетки центра сердечного автоматизма
Нейроны-пейсмекеры (водители ритма): у некоторых клеток так много постоянно открытых Na+-каналов, что заряд цитоплазмы не способен удерживаться на стабильном уровне и медленно смещается вверх (деполяризация).
При достижении порога запуска ПД происходит генерация импульса, после заряд нейрона отбрасывается к «минимуму» (около -60 мВ и даже ниже). Затем вновь начинается деполяризация, запуск ПД и т.д. В ЦНС человека такими свойствами обладают нейроны дыхательного центра. Пейсмекерами являются и клетки – водители сердечного ритма. Чем больше постоянно открытых Na+-каналов, тем чаще следуют ПД. Регуляция частоты разрядов идет также за счет открывания особых типов К+-каналов, реагирующих на гормоны, медиаторы и др. Чем > таких каналов открыто, ниже «минимум» и реже частота ПД.
• у пейсмекеров сердца нет фазы плато, ПД гораздо более короткий;
суммарный ПД всех клеток сердца – электрокардиограмма (ЭКГ);
распространение ПД по сердцу – за счет электрических синапсов.
Основное скопление клеток-пейсмекеров сердца – в верхней части правого предсердия («водитель сердечного ритма»). Отсюда ПД распространяется сначала по предсердиям, потом по желудочкам. Пейсмекеры сердца – видоизмененные мышечные клетки.
• Дыхательные нейроны, активность которых вызывает инспирацию (вдох) или экспирацию (выдох), называются соответственно инспираторными и экспираторными нейронами. Инспираторные и экспираторные нейроны иннервируют дыхательные мышцы.
Среди нейронов вдоха ключевую роль играют клетки-пейсмекеры, находящиеся в ядрах нижней части ромбовидной ямки.
Врождённо обусловленная частота их активации у человека : примерно 1 волна в 5 сек (12 раз в минуту = частота дыхания во сне).
От клеток-пейсмекеров (генераторов ритма)( Интересным вариантом генерации ПД являются пейсмекерные нейроны (клетки-пейсмекеры). Они обладают большой по-
постоянной проницаемостью мембраны для ионов Na+. В резульрезультате у клеток-пейсмекеров не существует стабильного ПП.Разность потенциалов на их мембране постоянно стремится вверх.
Когда она достигает порогового значения, происходит запуск ПД. ) ПД передаются к другим дыхательным нейронам и мотонейронам шейных и грудных сегментов спинного мозга, запускающим сокращение диафрагмы и межрёберных мышц.
Вдох приводит к постепенному растяжению лёгких и стенок грудной клетки. Растяжение активирует особые механорецепторы (отростки чувствительных нервных клеток, входящие в состав X нерва), передающие сигнал в продолговатый мозг и мост. Этот сигнал тормозит инспираторные и включает экспираторные нейроны (вдох сменяется выдохом). После выдоха возникает пауза (до нового включения пейсмекеров). На частоту работы пейсмекеров (долю постоянно открытых Na+-каналов) влияют сигналы от хеморецепторов и ствола мозга.
Хеморецепторы: концентрация O2 и CO2 в крови; влияния ствола: эмоции (голубое пятно), температура (гипоталамус), центры бодрствования, боль, стресс и др. Возможен, кроме того, произвольный контроль дыхания.
Ещё о дыхательных центрах:
• инспираторные нейроны – это не только пейсмекеры, но и клетки, «зацикливающие» ПД по замкнутому контуру, что даёт возможность оказывать на мотонейроны стабильное активирующее действие;
• хеморецепторы CO2 (и H+) представляют собой нейроны на дне ромбовидной ямки; активируются в основном при физической нагрузке;
• хеморецепторы O2 расположены в каротидном синусе (область разветвления на наружную и внутреннюю сонные артерии); важны, например, при подъёме в горы (на высоте 5км воздуха в 2 раза меньше);
• пробуждение приводит к активации пейсмекеров центрами бодрствования, и частота дыхания растёт до 16-18 в мин; при эмоциях и физической нагрузке – до 30-40 в мин.
12-2. Глутаминовая кислота (ГлК) и формирование памяти: пути модификации ГлК-синапсов (роль NMDA-рецепторов, фосфорилирование и синтез новых рецепторов).
Глутаминовая кислота (Glu) – главный возбуждающий медиатор (около 40% всех нейронов); проведение основных потоков информации в ЦНС (сенсорные сигналы, двигат. команды, память).
Память – способность мозга сохранять информацию и воспроизводить её через некоторые промежутки времени. По времени сохранения информации память бывает кратковременной и долговременной. В основе кратковременной памяти лежит циркуляция нервных импульсов в замкнутых нейронных цепях. Долговременная память связана со структурными изменениями в нейронных сетях. Специальные пептиды, синтезируемые нейронами, облегчают процесс возбуждения клеток в моменты извлечения информации «из памяти». В формировании памяти участвуют нейроны височных долей больших полушарий, ретикулярная формация ствола мозга, гипоталамус. Различают следующие виды памяти: двигательную, зрительную, слуховую, осязательную, смешанную.
Наиболее изучены NMDA-рецепторы. Уникальная особенность NMDA-рецепторов состоит в том, что их канал может блокировать ион Mg2+ («магниевая пробка»). В такой ситуации рецептор выключен, и ВПСП не возникает. Однако, если заряд в нейроне оказывается выше уровня -30 мВ, Mg2+ удаляется из канала («выбивание пробки»), и рецептор переходит в рабочее состояние.
Этот механизм – один из важнейших способов резко усилить эффективность работы синапса, создать новый канал для передачи информации. Подобные изменения лежат в основе процессов обучения и формирования памяти. Наиболее очевидный способ
удаления Mg2+: ПД, запущенный с помощью не-NMDA-рецепторов (например, АМРА), находящихся на той же постсин. мембране. Данный синапс исходно не пропускал слабые сигналы, вызывающие небольшой выброс Glu.
После однократной сильной стимуляции, запустившей ПД через не-NMDA-рецепторы, произошло «выбивание пробок».
Теперь на постсин. мембране включились NMDA-рец. (их м.б. в неск. раз больше, чем не-NMDA), и даже слаб. сигнал вызывает большой ВПСП, запуская ПД.
Подобного рода синапсы, способные практически мгновенно увеличить эффективность работы, характерны для коры больш. полушарий и, особенно, гиппокампа, избирательно связанного с кратковременной памятью.
Входящий в клетку Са2+ может запускать цепь хим. реакций, активиру-ющих не-NMDA-рецепторы (прежде всего, за счет присоединения фосф. кислоты к АМРА-рецепторам – фосфорилирования).
В обоих случаях измененное состояние синапса сохраняется в течение нескольких минут-часов («кратковременная память»).
Более длительные изменения обеспечиваются передачей сигнала посредством ионов Са2+ на ядерную ДНК, активацией генов не-NMDA-рецепторов, синтезом дополнительных белков-рецепторов и их встраиванием в постсинаптическую мембрану. Подобная реакция требует значительного времени (часы-сутки), но зато измененное состояние синапса сохраняется неограниченно долго («долговременная память»). Таким образом, индивидуальная память в большинстве ее проявлений – это сформированные в Ц Пусть мы учим крысу прыгать на полку в ответ на звонок (иначе она получает удар эл. током). Это – пример условного рефлекса («ассоциативное обучение»).
Произошло формирование нового канала для передачи информации, образованного интернейронами коры за счет повышения эффективности Glu-синапсов. В основе – синтез белков. Но это не «белки памяти», а Glu-рецепторы. То есть дело не в белках, а в информационных каналах (вернее, в том, что они соединяют; сама траектория движения сигнала не так уж важна и индивидуально очень вариабельна).
В связи с такой организацией памяти мы технически еще очень далеки от того, чтобы считывать информацию с мозга и записывать ее прямо в ЦНС.
НС каналы для передачи информации («ассоциации» между нейронами). В основе формирования таких каналов – увеличение эффективности Glu-синапсов по одному из описанных механизмов.
12-3. Гормоны задней доли гипофиза (вазопрессин и окситоцин), их функции, влияние на работу ЦНС. Центры жажды гипоталамуса, роль осморецепторов и ангиотензина.
Центр питьевой потребности: уже знакомые нам паравентрикулярные (PVN) и супраоптические (SON) ядра (сверху справа срезы мозга козы).
Здесь находятся осморецепторы: клетки, реагирующие на содержание NaCl в крови (идеально 0.7-0.8 %).
При росте концентрации NaCl – выделение вазопрессина (экономия воды на уровне почек) и чувство жажды (запуск соответствующих поведенческих реакций).
Центр питьевой потребности активирует, кроме того, информация о недостаточном растяжении сосудов и предсердий (потеря воды), а также гормон ангиотензин
13-1. Хемочувствительные ионные каналы: сравнение свойств, возбуждающие и тормозные эффекты, функции в синапсах, нервных и мышечных клетках.
Хемочувствительные ионные каналы: особый тип белковых каналов, находятся на мембране, окружающей синаптический контакт. Открывание — при появлении медиатора.
3 класса: избирательно проницаемые по отношению к:
1.) ионам Na
2.) ионам К
3.) ионам Cl
Открывание 1. - вход в клетку Na, деполяризация, возникновение возбуждающего постсинаптического потенциала(ВПСП), заряд нейрона повышается, для запуска ПД необходим меньший стимул.
Открывание 2 и 3 — вход в клетку К, Cl, гиперполяризация, возникает тормозный постсинаптический потенциал(ТПСП), для запуска ПД — больший стимул. Такие функции мозга, как внимание и двигательный контроль, основаны на работе ТПСП.
Работа ТПСП, основанная на 3, заметна только на фоне ВПСП, в связи с тем,что Cl несет отрицательный заряд и нормальный ПП мешает его входу.
ВПСП и ТПСП — длительность около 10мс(иногда 50-100мс)
амплитуда 5-10мВ(в крупном нервно-мышечном синапсе аналог ВПСП-потенциал концевой пластинки-может достигать 40мВ и более)
Одиночный ВПСП не может запустить ПД, для достижения порога запуска необходима временная и/или пространственная суммация. При этом идет конкуренция с ТПСП, для которых тоже возможна суммация. ПД возникает, если разность всех ВПСП и ТПСП больше порогового стимула.
Суммация необходима для того, чтобы сигнал «подтвердил свою значиомсть» для НС
По принципу пространственной суммации идет, например, опознавание сенсорных образов, при этом каждый синапс сообщает о наличии определенного признака.
Взаимодействие синапсов, генерирующих ВПСП и ТПСП, лежащих на одном постсинаптическом нейроне лежит в основе всех «вычислительных операций» мозга(например, конкуренция возбуждающих и тормозных сигналов на нейроне промежуточного ядра серого вещества спинного мозга)
13-2. Эпилепсия: диагностика, причины и проявления; опасность судорожных припадков. Противоэпилептические препараты, механизмы их действия на работу мозга.
Около 0.5% населения (предрасположены 2%).
В большинстве случаев в мозге больного есть зона постоянной активации (эпилептический очаг), из которого при определенных условиях(сильные эмоции, интенсивные сенсорные стимулы, ишемия) или самопроизвольно возбуждение распространяется по ЦНС, вызывая судороги.
Судороги опасны сами по себе (потеря сознания, падение, перегрузка сердечно-сосуд. системы), а также тем, что в это время в нейроны входит огромный избыток Са2+ (через Glu-рецепторы).
Избыток Са2+ приводит к гиперактивации ферментных систем и «выгоранию» клеток («нейротоксическое действие Glu»).
В связи с этим очень важно не допустить новых припадков (используют агонисты ГАМК-рецеп-торов, вальпроаты, антагонисты Glu и др.).
Барбитураты: открыты более 100 лет назад в день Св. Варвары., продолжительное общее тормозящее действие, используются для длительного наркоза, при сильной эпилепсии — как успокаивающее.(барбитал, люминал, гексенал)
Бензодиазепины: открыты в середине 20 в., более мягкое действие, используются как трнаквилизаторы, снотворные, при умеренной эпилепсии(валиум, фенозипам, гидазепам)
Основные проблемы: наличие побочных эффектов(снижение скорости реакции, заторможенность мышления, сонливость)
привыкание и зависимость
Вальпроаты (соли вальпроевой кис-лоты) – блокаторы ГАМК трансферазы
Мемантин: антагонист NMDA-рецептора глутаминовой кислоты, блокирует канал рецептора в его верхней
части; снижает тревожность и вероятность
эпилептических припадков
Диагностика по ЭЭГ: над эпилепт. очагом – характерные мед-ленные волны высокой амплитуды, кот. стабилизируются перед и во время припадка («раскачка» таких волн – гипервенти-ляция, вспышки света).
Причины: родовые травмы (прежде всего, асфиксия), черепно-мозговые травмы (гематомы), опухоли, сосудистые и эндокринные заболевания, генетические отклонения (например, мутации ГАМКА-рецептора).
Ребенок-эпилептик при адекватном лечении лишь в 25% случаев остается эпилеп-тиком в зрелом возрасте.
13.3. Центры голода и пищевого насыщения гипоталамуса, их взаимодействие и последствия повреждения. Роль глюкорецепторов и лептина.
14-1. Роль ионов натрия и Na+-каналов в деятельности нервных клеток: участие в формировании ПП, ПД, ВПСП, ритма пейсмекеров.
Na+ и Са2+ – активирующее действие на нервную систему
К + и Cl- – участвуют в торможении нервных клеток
В основе этих процессов – открывание и закрывание электрочувствительных Na+- и К+-каналов.
Эти каналы имеют створки, реагирующие на изменение заряда внутри нейрона и открывающиеся, если этот
заряд становится выше -50 мВ.
14-2. Синтез и значение ГАМК в нервных клетках. Типы рецепторов к ГАМК, их свойства. Агонисты и антагонисты рецепторов ГАМК: примеры и разнообразие эффектов.
Гамма-аминомасляная кислота (ГАМК) – главный тормозный медиатор (около 40% всех нейронов); запрет проведения «ненужной» информации (внимание, двигательный контроль).
Непищевая аминокислота: аминогруппа в 3-м () положении.
Нормальная деятельность ЦНС обеспечивается тонким балансом Glu и ГАМК.
Нарушение этого баланса (как правило, в сторону уменьшения торможения) негативно влияет на многие нервные процессы – вплоть до возникно-вения мощных локальных очагов возбуждения, что ведёт к развитию эпилептических припадков.
Синтез – из глутаминовой кислоты за счет отщепления СО2 (фермент глутамат декарбоксилаза).
ГАМК может использоваться в качестве медиатора, но может терять аминогруппу (фермент ГАМК-трансфераза) и быстро окисляться с выдел. энергии.
ГАМК на 10% проходит ГЭБ. Однако при ее системном введении (таблетки «Аминалон») наблюдается не столько торможение ЦНС, сколько «питание» нейро-нов и улучшение их общего состояния (ноотропное действие ГАМК).
Первым ноотропом стал ноотропил, (пирацетам) созданный путем химической модификации ГАМК: исходную молекулу замкнули в кольцо и присоединили к азоту дополнительный радикал.
Ноотропы, являющиеся производными ГАМК, улучшают выработку энергии нейронами.
Рецепторы —
ГАМКА, ионотропный, 5 белковых субъединиц, образующих хлорный канал, обычно — на постсинаптической мембране, вызывают ТПСП
ГАМКБ – м етаботропные, связаны с калиевым каналом, чаще на пресинаптической мембране; тормозят экзоцитоз различных медиаторов.
Антагонисты ГАМК: вызывают судороги.
Бикукулин – мешает ГАМК присо-единяться к рецептору А-типа; токсин североамериканского травянистого растения дицентры клобучковой(Dicentra cucullaria).
Пикротоксин – блокирует хлорный канал; токсин плодов индийского кустарника Anamirta cocculus.
Барбитураты: открыты более 100 лет назад в день Св. Варвары., продолжительное общее тормозящее действие, используются для длительного наркоза, при сильной эпилепсии — как успокаивающее.(барбитал, люминал, гексенал) агонист гамка
Бензодиазепины: открыты в середине 20 в., более мягкое действие, используются как трнаквилизаторы, снотворные, при умеренной эпилепсии(валиум, фенозипам, гидазепам)агонист гамк а
Основные проблемы: наличие побочных эффектов(снижение скорости реакции, заторможенность мышления, сонливость)
привыкание и зависимость
