- •Сетевые операционные системы
- •Глава 1. Эволюция операционных систем 22
- •Глава 2. Назначение и функции операционной системы 59
- •Глава 3. Архитектура операционной системы 95
- •Глава 4. Процессы и потоки 139
- •Глава 5. Управление памятью 260
- •Глава 6. Аппаратная поддержка мультипрограммирования на примере процессора Pentium 333
- •Глава 7. Ввод-вывод и файловая система 389
- •Глава 8. Дополнительные возможности файловых систем 512
- •Глава 9. Сеть как транспортная система 576
- •Глава 10. Концепции распределенной обработки в сетевых ос 686
- •Глава 11. Сетевые службы 736
- •Глава 12. Сетевая безопасность 855
- •Благодарности
- •Предисловие авторов ко второму изданию
- •Для кого эта книга
- •Структура книги
- •Глава 9 является компактным введением в сетевые технологии, о ее содержании уже рассказывалось при описании отличий второй редакции учебника.
- •От издательства
- •Глава 1. Эволюция операционных систем
- •Первые операционные системы
- •Мультипрограммные операционные системы для мэйнфреймов
- •Первые сетевые операционные системы
- •Операционные системы миникомпьютеров и первые локальные сети
- •Развитие операционных систем в 80-е годы
- •Развитие операционных систем в 90-е годы
- •Современный этап развития операционных систем персональных компьютеров
- •Надежность
- •Простота обслуживания
- •Пользовательский интерфейс
- •Средства информационной самоорганизации
- •Защита данных
- •Виртуальные распределенные вычислительные системы суперкомпьютеров
- •Задачи и упражнения
- •Глава 2. Назначение и функции операционной системы
- •Операционные системы для автономного компьютера
- •Ос как виртуальная машина
- •Ос как система управления ресурсами
- •Функциональные компоненты операционной системы автономного компьютера
- •Управление процессами
- •Управление памятью
- •Управление файлами и внешними устройствами
- •Защита данных и администрирование
- •Интерфейс прикладного программирования
- •Пользовательский интерфейс
- •Сетевые операционные системы
- •Функциональные компоненты сетевой ос
- •Сетевые службы и сетевые сервисы
- •Встроенные сетевые службы и сетевые оболочки
- •Одноранговые и серверные сетевые операционные системы
- •Ос в одноранговых сетях
- •Ос в сетях с выделенными серверами
- •Требования к современным операционным системам
- •Задачи и упражнения
- •Глава 3. Архитектура операционной системы
- •Ядро и вспомогательные модули ос
- •Ядро в привилегированном режиме
- •Многослойная структура ос
- •Аппаратная зависимость и переносимость ос
- •Типовые средства аппаратной поддержки ос
- •Машинно-зависимые компоненты ос
- •Переносимость операционной системы
- •Микроядерная архитектура Концепция
- •Преимущества и недостатки микроядерной архитектуры
- •Совместимость и множественные прикладные среды
- •Двоичная совместимость и совместимость исходных текстов
- •Трансляция библиотек
- •Способы реализации прикладных программных сред
- •Система виртуальных машин
- •Задачи и упражнения
- •Глава 4. Процессы и потоки
- •Мультипрограммирование
- •Мультипрограммирование в системах пакетной обработки
- •Мультипрограммирование в системах разделения времени
- •Мультипрограммирование в системах реального времени
- •Мультипроцессорная обработка
- •Планирование процессов и потоков
- •Понятия «процесс» и «поток»
- •Создание процессов и потоков
- •If(fork()) { действия родительского процесса }
- •Планирование и диспетчеризация потоков
- •Состояния потока
- •Вытесняющие и не вытесняющие алгоритмы планирования
- •Алгоритмы планирования, основанные на квантовании
- •Алгоритмы планирования, основанные на приоритетах
- •Смешанные алгоритмы планирования
- •Планирование в системах реального времени
- •Моменты перепланирования
- •Мультипрограммирование на основе прерываний Назначение и типы прерываний
- •Аппаратная поддержка прерываний
- •Программные прерывания
- •Диспетчеризация и приоритезация прерываний в ос
- •Функции централизованного диспетчера прерываний на примере ос семейства Windows nt
- •Процедуры обработки прерываний и текущий процесс
- •Системные вызовы
- •Синхронизация процессов и потоков Цели и средства синхронизации
- •Необходимость синхронизации и гонки
- •Критическая секция
- •Блокирующие переменные
- •Семафоры
- •Системные синхронизирующие объекты
- •Задачи и упражнения
- •Глава 1. Эволюция операционных систем 22
- •Глава 2. Назначение и функции операционной системы 59
- •Глава 3. Архитектура операционной системы 95
- •Глава 4. Процессы и потоки 139
- •Глава 5. Управление памятью 260
- •Глава 6. Аппаратная поддержка мультипрограммирования на примере процессора Pentium 333
- •Глава 7. Ввод-вывод и файловая система 389
- •Глава 8. Дополнительные возможности файловых систем 512
- •Глава 9. Сеть как транспортная система 576
- •Глава 10. Концепции распределенной обработки в сетевых ос 686
- •Глава 11. Сетевые службы 736
- •Глава 12. Сетевая безопасность 855
- •Глава 5. Управление памятью
- •Функции ос по управлению памятью
- •Типы адресов
- •Риc. 5.6. Общая и индивидуальные части виртуальных адресных пространств
- •Алгоритмы распределения памяти
- •Фиксированные разделы
- •Динамические разделы
- •Перемещаемые разделы
- •Виртуальная память
- •Страничное распределение
- •Оптимизация страничной виртуальной памяти
- •Двухуровневое страничное распределение памяти
- •Сегментно-страничное распределение
- •Разделяемые сегменты памяти
- •Кэширование данных. Универсальная концепция
- •Иерархия памяти
- •Принцип действия кэш-памяти
- •Проблема согласования данных
- •Отображение основной памяти на кэш
- •Схемы выполнения запросов в системах с кэш-памятью
- •Задачи и упражнения
- •Глава 6. Аппаратная поддержка мультипрограммирования на примере процессора Pentium
- •Регистры процессора
- •Привилегированные команды
- •Средства поддержки сегментации памяти
- •Виртуальное адресное пространство
- •Преобразование адресов
- •Защита данных при сегментной организации памяти
- •Сегментно-страничный механизм
- •Средства вызова процедур и задач
- •Вызов процедур
- •Вызов задач
- •Механизм прерываний
- •Кэширование в процессоре Pentium
- •Буфер ассоциативной трансляции
- •Кэш первого уровня
- •Совместная работа кэшей разного уровня
- •Задачи и упражнения
- •Глава 7. Ввод-вывод и файловая система
- •Задачи ос по управлению файлами и устройствами
- •Согласование скоростей обмена и кэширование данных
- •Разделение устройств и данных
- •Программный интерфейс к устройствам
- •Поддержка широкого спектра драйверов
- •Динамическая загрузка и выгрузка драйверов
- •Поддержка файловых систем
- •Синхронный и асинхронный режимы
- •Многослойная модель подсистемы ввода-вывода Общая схема
- •Менеджер ввода-вывода
- •Многоуровневые драйверы
- •Логическая организация файловой системы
- •Цели и задачи файловой системы
- •Типы файлов
- •Иерархическая структура файловой системы
- •Имена файлов
- •Монтирование
- •Атрибуты файлов
- •Логическая организация файла
- •Физическая организация файловой системы
- •Диски, разделы, секторы, кластеры
- •Физическая организация и адресация файла
- •Физическая организация fat
- •Физическая организация s5 и ufs
- •Физическая организация ntfs
- •Структура тома ntfs
- •Структура файлов ntfs
- •Каталоги ntfs
- •Файловые операции фс с запоминанием и без запоминания состояния операций
- •Открытие файла
- •Обмен данными с файлом
- •Блокировки файлов
- •Стандартные файлы ввода и вывода, перенаправление вывода
- •Контроль доступа к файлам Файл как разделяемый ресурс
- •Механизм контроля доступа
- •Контроль доступа в ос Unix
- •Контроль доступа в ос семейства Windows nt Общая характеристика
- •Разрешения на доступ к каталогам и файлам
- •Встроенные группы пользователей и их права
- •Задачи и упражнения
- •Глава 8. Дополнительные возможности файловых систем
- •Специальные файлы и аппаратные драйверы Специальные файлы как универсальный интерфейс
- •Структурирование аппаратных драйверов
- •Структура драйвера ос семейства Windows nt
- •Структура драйвера Unix
- •Блок-ориентированные драйверы
- •Байт-ориентированные драйверы
- •Отображаемые на память файлы
- •Дисковый кэш
- •Традиционный дисковый кэш
- •Дисковый кэш на основе виртуальной памяти
- •Отказоустойчивость файловых и дисковых систем
- •Восстанавливаемость файловых систем. Причины нарушения целостности файловых систем
- •Протоколирование транзакций
- •Восстанавливаемость файловой системы ntfs
- •Избыточные дисковые подсистемы raid
- •Обмен данными между Процессами и потоками
- •Конвейеры
- •Именованные конвейеры
- •Очереди сообщений
- •Разделяемая память
- •Задачи и упражнения
- •Глава 9. Сеть как транспортная система
- •Роль сетевых транспортных средств ос
- •Коммутация пакетов Пакеты
- •Буферы и очереди
- •Методы продвижения пакетов
- •Протокол и стек протоколов
- •Семиуровневая модель osi
- •Физический уровень
- •Канальный уровень
- •Сетевой уровень
- •Транспортный уровень
- •Сеансовый уровень
- •Уровень представления
- •Прикладной уровень
- •Стек tcp/ip Структура стека
- •Классы ip-адресов
- •Использование масок
- •Частные и публичные iр-адреса
- •Символьные имена и dns
- •Протокол dhcp
- •Ручное конфигурирование таблиц
- •Протоколы маршрутизации
- •Реализация стека протоколов в универсальной ос
- •Структура транспортных средств универсальной ос
- •Конфигурирование параметров стека tcp/ip
- •Функциональная схема маршрутизатора
- •Основные характеристики Cisco ios
- •Модульная структура ios
- •Прерывания и управление процессами
- •Организация памяти
- •Работа с буферами пакетов
- •Программная маршрутизация и ускоренная коммутация
- •Поддержка QoS
- •Задачи и упражнения
- •Глава 10. Концепции распределенной обработки в сетевых ос
- •Модели сетевых служб и распределенных приложений
- •Разделение приложений на части
- •Двухзвенные схемы
- •Трехзвенные схемы
- •Механизм передачи сообщений в распределенных системах
- •Синхронизация
- •Буферизация в примитивах передачи сообщений
- •Способы адресации
- •Надежные и ненадежные примитивы
- •Механизм Sockets ос Unix
- •Вызов удаленных процедур
- •Концепция удаленного вызова процедур
- •Генерация стабов
- •Формат rPp-сообщений
- •Связывание клиента с сервером
- •Особенности реализации rpc на примере систем Sun rpc и dce rpc
- •Задачи и упражнения
- •Глава 11. Сетевые службы
- •Сетевая файловая система
- •Модель неоднородной сетевой файловой системы
- •Модель загрузки-выгрузки и модель удаленного доступа
- •Архитектурные решения
- •Производительность, надежность и безопасность сетевой файловой системы
- •Семантика разделения файлов
- •Файловые stateful- и stateless-cepверы
- •Место расположения кэша
- •Способы распространения модификаций
- •Проверка достоверности кэша
- •Репликация файлов
- •Прозрачность репликации
- •Согласование реплик
- •Пример. Протокол передачи файлов ftp
- •Пример. Файловая система nfs
- •Справочная сетевая служба Назначение справочной службы
- •Архитектура справочной службы
- •Децентрализованная модель
- •Централизованная модель
- •Централизованная модель с резервированием
- •Декомпозиция справочной службы на домены
- •Распределенная модель
- •Основные концепции справочной службы Active Directory Домены, контроллеры доменов
- •Объекты
- •Глобальный каталог
- •Иерархическая структура Active Directory
- •Иерархия организационных единиц
- •Иерархия доменов. Доверительные отношения
- •Пространство имен
- •Репликация в Active Directory
- •Межсетевое взаимодействие
- •Основные подходы к организации межсетевого взаимодействия
- •Трансляция
- •Мультиплексирование стеков протоколов
- •Инкапсуляция протоколов
- •Задачи и упражнения
- •Глава 12. Сетевая безопасность
- •Основные понятия безопасности Конфиденциальность, целостность и доступность данных
- •Классификация угроз
- •Системный подход к обеспечению безопасности
- •Политика безопасности
- •Базовые технологии безопасности
- •Шифрование
- •Симметричные алгоритмы шифрования
- •Несимметричные алгоритмы шифрования
- •Криптоалгоритм rsa
- •Односторонние функции шифрования
- •Аутентификация, авторизация, аудит Аутентификация
- •Авторизация доступа
- •Технология защищенного канала
- •Технологии аутентификации Сетевая аутентификация на основе многоразового пароля
- •Аутентификация с использованием одноразового пароля
- •Синхронизация по времени
- •Использование слова-вызова
- •Аутентификация на основе сертификатов
- •Сертифицирующие центры
- •Инфраструктура с открытыми ключами
- •Аутентификация информации
- •Цифровая подпись
- •Аутентификация программных кодов
- •Система Kerberos
- •Первичная аутентификация
- •Получение разрешения на доступ к ресурсному серверу
- •Получение доступа к ресурсу
- •Достоинства и недостатки
- •Задачи и упражнения
- •Ответы к задачам и упражнениям Глава 1
- •Глава 2
- •Глава 3
- •Глава 4
- •Глава 5
- •Глава 6
- •Глава 7
- •Глава 8
- •Глава 9
- •Глава 10
- •Глава 11
- •Глава 12
- •Рекомендуемая литература
- •Сетевые операционные системы: Учебник для вузов
Многослойная модель подсистемы ввода-вывода Общая схема
Многослойное построение программного обеспечения, характерное для операционных систем вообще, оказывается особенно естественным и полезным в случае подсистемы ввода-вывода. При большом разнообразии устройств ввода-вывода, обладающих существенно различными характеристиками (принтер и диски, графический монитор и сетевой адаптер и т. п.), иерархическая структура программного обеспечения позволяет соблюсти баланс между двумя весьма противоречивыми требованиями: с одной стороны, необходимо учесть все особенности каждого устройства, с другой стороны, обеспечить единое логическое представление и унифицированный интерфейс для устройств всех типов.
В соответствии с иерархическим подходом нижние слои подсистемы ввода-вывода должны включать индивидуальные драйверы, написанные для конкретных физических устройств, а верхние слои — обобщать процедуры управления этими устройствами, предоставляя общий интерфейс если не для всех устройств, то, по крайней мере, для групп устройств, обладающих некоторыми общими характеристиками, например, для принтеров определенного производителя или для всех матричных принтеров и т. п.
Многослойность структуры способствует решению большинства задач подсистемы ввода-вывода, делая, например более простым включение новых драйверов, поддержку нескольких файловых систем, динамическую загрузку-выгрузку драйверов и других.
Обобщенная структура подсистемы ввода-вывода представлена на рис. 7.2.
Рис. 7.2. Структура подсистемы ввода-вывода
Из рисунка видно, что программное обеспечение ввода-вывода делится не только на горизонтальные слои, но и на вертикальные. Это объясняется тем, что для такого разнообразного мира, как внешние устройства, трудно обеспечить единообразие в разбиении функций управления на слои. Поэтому общий принцип многослойности остается справедливым, однако для устройств определенного типа он реализуется по-разному с разным количеством слоев и их функциями. В представленной структуре в качестве примера приведены три вертикальные подсистемы, управляющие дисками, графическими устройствами (такими как мониторы, принтеры и плоттеры) и сетевыми адаптерами. Естественно, к этому перечню можно добавить и другие, например, подсистему управления символьными терминалами или какими-либо специализированными устройствами, такими как аналого-цифровые и цифро-аналоговые преобразователи.
В каждой вертикальной подсистеме существует несколько слоев модулей. Нижний слой образуют так называемые аппаратные драйверы устройств, название которых отражает тот факт, что они управляют аппаратурой внешних устройств, осуществляя обмен байтами и блоками байтов, и не имеют, как правило, дела с более высокоуровневыми вопросами логической организации данных, например с файлами или сложными графическими объектами. Функции вышележащих слоев в значительной степени зависят от типа вертикальной подсистемы.
Менеджер ввода-вывода
В подсистеме ввода-вывода наряду с модулями, отражающими специфику внешних устройств и образующими вертикальные подсистемы, существуют модули универсального назначения. Эти модули организуют согласованную работу всех остальных компонентов подсистемы ввода-вывода и взаимодействие с пользовательскими процессами и другими подсистемами ОС. Так же как функции управления устройствами, эти организующие функции распределены по всем уровням, образуя оболочку, называемую менеджером ввода-вывода.
Задачи менеджера ввода-вывода могут быть сведены к поддержке четырех интерфейсов:
пользовательский интерфейс ввода-вывода;
интерфейс с устройствами ввода-вывода;
интерфейс с другими подсистемами ОС;
внутренний интерфейс между компонентами подсистемы ввода-вывода.
Верхний слой менеджера составляют модули ОС, которые принимают от пользовательских процессов запросы на ввод-вывод, поступающие в виде системных вызовов, и переадресуют их отвечающим за определенный класс устройств модулям и драйверам, а также возвращают процессам результаты операций ввода-вывода. Таким образом, этот слой поддерживает пользовательский интерфейс ввода-вывода, создавая для прикладных программистов максимум удобств по манипулированию внешними устройствами и расположенными на них данными.
Нижний слой менеджера реализует непосредственное взаимодействие с контроллерами внешних устройств, экранируя драйверы от особенностей аппаратной платформы компьютера — шины ввода-вывода, системы прерываний и т. п. Этот слой принимает от драйверов запросы на обмен данными с регистрами контроллеров в некоторой обобщенной форме с использованием независимых от шины ввода-вывода адресации и формата, а затем преобразует эти запросы в зависящий от аппаратной платформы формат. Диспетчер прерываний, рассмотренный ранее, может входить в состав менеджера ввода-вывода или же представлять собой отдельный модуль ядра. В последнем случае менеджер ввода-вывода выполняет для диспетчера прерываний первичную обработку запросов прерываний, передавая диспетчеру обобщенные сведения об источнике запроса.
Еще одной функцией менеджера является организация взаимодействия модулей подсистемы ввода-вывода с модулями других подсистем ОС, таких как подсистемы управления процессами, виртуальной памяти и другие.
Важной функцией менеджера ввода-вывода является также создание некоторой удобной среды для взаимодействия компонентов подсистемы ввода-вывода, для этого в менеджер ввода-вывода включают поддержку некоторого стандартного внутреннего интерфейса взаимодействия модулей ввода-вывода между собой, а также нагружают менеджер выполнением наиболее часто используемых при работе драйверов функций. Эти функции оформляются как системные процедуры, которые драйвер может вызывать для выполнения некоторых типовых действий. Примерами могут служить операции обмена с регистрами контроллера, ведение буферов для промежуточного хранения данных ввода-вывода, синхронизация работы Нескольких драйверов, копирование данных из пользовательского пространства в пространство системы. Такой подход существенно облегчает разработку и включение новых драйверов и файловых систем в состав ОС.
Роль менеджера ввода-вывода выполняет среда STREAMS, существующая во многих версиях операционной системы Unix. Другим примером является менеджер ввода-вывода ОС семейства Windows NT. Он организует взаимодействие между модулями с помощью пакетов запросов ввода-вывода (I/O Request Packet, IRP). Получив запрос от процедуры системного вызова, менеджер формирует IRP и передает его нужному драйверу. Драйвер после выполнения запрошенной операции возвращает ответ в виде еще одного пакета IRP менеджеру, а тот, в свою очередь, может при необходимости передать этот пакет IRP другому драйверу. Менеджер позволяет драйверам задавать взаимосвязи (biddings) между собой, и на основании информации о взаимосвязях и происходит передача пакетов IRP. Кроме того, менеджер ОС семейства Windows NТ поддерживает динамическую загрузку-выгрузку драйверов без останова системы.
Наличие стандартного внутреннего межмодульного интерфейса повышает устойчивость и улучшает расширяемость подсистемы ввода-вывода, хотя может несколько замедлить ее работу, так как любое разделение на едой и части приводит к дополнительным операциям взаимодействия по сравнению с монолитной организацией с прямыми передачами управления.
