- •Сетевые операционные системы
- •Глава 1. Эволюция операционных систем 22
- •Глава 2. Назначение и функции операционной системы 59
- •Глава 3. Архитектура операционной системы 95
- •Глава 4. Процессы и потоки 139
- •Глава 5. Управление памятью 260
- •Глава 6. Аппаратная поддержка мультипрограммирования на примере процессора Pentium 333
- •Глава 7. Ввод-вывод и файловая система 389
- •Глава 8. Дополнительные возможности файловых систем 512
- •Глава 9. Сеть как транспортная система 576
- •Глава 10. Концепции распределенной обработки в сетевых ос 686
- •Глава 11. Сетевые службы 736
- •Глава 12. Сетевая безопасность 855
- •Благодарности
- •Предисловие авторов ко второму изданию
- •Для кого эта книга
- •Структура книги
- •Глава 9 является компактным введением в сетевые технологии, о ее содержании уже рассказывалось при описании отличий второй редакции учебника.
- •От издательства
- •Глава 1. Эволюция операционных систем
- •Первые операционные системы
- •Мультипрограммные операционные системы для мэйнфреймов
- •Первые сетевые операционные системы
- •Операционные системы миникомпьютеров и первые локальные сети
- •Развитие операционных систем в 80-е годы
- •Развитие операционных систем в 90-е годы
- •Современный этап развития операционных систем персональных компьютеров
- •Надежность
- •Простота обслуживания
- •Пользовательский интерфейс
- •Средства информационной самоорганизации
- •Защита данных
- •Виртуальные распределенные вычислительные системы суперкомпьютеров
- •Задачи и упражнения
- •Глава 2. Назначение и функции операционной системы
- •Операционные системы для автономного компьютера
- •Ос как виртуальная машина
- •Ос как система управления ресурсами
- •Функциональные компоненты операционной системы автономного компьютера
- •Управление процессами
- •Управление памятью
- •Управление файлами и внешними устройствами
- •Защита данных и администрирование
- •Интерфейс прикладного программирования
- •Пользовательский интерфейс
- •Сетевые операционные системы
- •Функциональные компоненты сетевой ос
- •Сетевые службы и сетевые сервисы
- •Встроенные сетевые службы и сетевые оболочки
- •Одноранговые и серверные сетевые операционные системы
- •Ос в одноранговых сетях
- •Ос в сетях с выделенными серверами
- •Требования к современным операционным системам
- •Задачи и упражнения
- •Глава 3. Архитектура операционной системы
- •Ядро и вспомогательные модули ос
- •Ядро в привилегированном режиме
- •Многослойная структура ос
- •Аппаратная зависимость и переносимость ос
- •Типовые средства аппаратной поддержки ос
- •Машинно-зависимые компоненты ос
- •Переносимость операционной системы
- •Микроядерная архитектура Концепция
- •Преимущества и недостатки микроядерной архитектуры
- •Совместимость и множественные прикладные среды
- •Двоичная совместимость и совместимость исходных текстов
- •Трансляция библиотек
- •Способы реализации прикладных программных сред
- •Система виртуальных машин
- •Задачи и упражнения
- •Глава 4. Процессы и потоки
- •Мультипрограммирование
- •Мультипрограммирование в системах пакетной обработки
- •Мультипрограммирование в системах разделения времени
- •Мультипрограммирование в системах реального времени
- •Мультипроцессорная обработка
- •Планирование процессов и потоков
- •Понятия «процесс» и «поток»
- •Создание процессов и потоков
- •If(fork()) { действия родительского процесса }
- •Планирование и диспетчеризация потоков
- •Состояния потока
- •Вытесняющие и не вытесняющие алгоритмы планирования
- •Алгоритмы планирования, основанные на квантовании
- •Алгоритмы планирования, основанные на приоритетах
- •Смешанные алгоритмы планирования
- •Планирование в системах реального времени
- •Моменты перепланирования
- •Мультипрограммирование на основе прерываний Назначение и типы прерываний
- •Аппаратная поддержка прерываний
- •Программные прерывания
- •Диспетчеризация и приоритезация прерываний в ос
- •Функции централизованного диспетчера прерываний на примере ос семейства Windows nt
- •Процедуры обработки прерываний и текущий процесс
- •Системные вызовы
- •Синхронизация процессов и потоков Цели и средства синхронизации
- •Необходимость синхронизации и гонки
- •Критическая секция
- •Блокирующие переменные
- •Семафоры
- •Системные синхронизирующие объекты
- •Задачи и упражнения
- •Глава 1. Эволюция операционных систем 22
- •Глава 2. Назначение и функции операционной системы 59
- •Глава 3. Архитектура операционной системы 95
- •Глава 4. Процессы и потоки 139
- •Глава 5. Управление памятью 260
- •Глава 6. Аппаратная поддержка мультипрограммирования на примере процессора Pentium 333
- •Глава 7. Ввод-вывод и файловая система 389
- •Глава 8. Дополнительные возможности файловых систем 512
- •Глава 9. Сеть как транспортная система 576
- •Глава 10. Концепции распределенной обработки в сетевых ос 686
- •Глава 11. Сетевые службы 736
- •Глава 12. Сетевая безопасность 855
- •Глава 5. Управление памятью
- •Функции ос по управлению памятью
- •Типы адресов
- •Риc. 5.6. Общая и индивидуальные части виртуальных адресных пространств
- •Алгоритмы распределения памяти
- •Фиксированные разделы
- •Динамические разделы
- •Перемещаемые разделы
- •Виртуальная память
- •Страничное распределение
- •Оптимизация страничной виртуальной памяти
- •Двухуровневое страничное распределение памяти
- •Сегментно-страничное распределение
- •Разделяемые сегменты памяти
- •Кэширование данных. Универсальная концепция
- •Иерархия памяти
- •Принцип действия кэш-памяти
- •Проблема согласования данных
- •Отображение основной памяти на кэш
- •Схемы выполнения запросов в системах с кэш-памятью
- •Задачи и упражнения
- •Глава 6. Аппаратная поддержка мультипрограммирования на примере процессора Pentium
- •Регистры процессора
- •Привилегированные команды
- •Средства поддержки сегментации памяти
- •Виртуальное адресное пространство
- •Преобразование адресов
- •Защита данных при сегментной организации памяти
- •Сегментно-страничный механизм
- •Средства вызова процедур и задач
- •Вызов процедур
- •Вызов задач
- •Механизм прерываний
- •Кэширование в процессоре Pentium
- •Буфер ассоциативной трансляции
- •Кэш первого уровня
- •Совместная работа кэшей разного уровня
- •Задачи и упражнения
- •Глава 7. Ввод-вывод и файловая система
- •Задачи ос по управлению файлами и устройствами
- •Согласование скоростей обмена и кэширование данных
- •Разделение устройств и данных
- •Программный интерфейс к устройствам
- •Поддержка широкого спектра драйверов
- •Динамическая загрузка и выгрузка драйверов
- •Поддержка файловых систем
- •Синхронный и асинхронный режимы
- •Многослойная модель подсистемы ввода-вывода Общая схема
- •Менеджер ввода-вывода
- •Многоуровневые драйверы
- •Логическая организация файловой системы
- •Цели и задачи файловой системы
- •Типы файлов
- •Иерархическая структура файловой системы
- •Имена файлов
- •Монтирование
- •Атрибуты файлов
- •Логическая организация файла
- •Физическая организация файловой системы
- •Диски, разделы, секторы, кластеры
- •Физическая организация и адресация файла
- •Физическая организация fat
- •Физическая организация s5 и ufs
- •Физическая организация ntfs
- •Структура тома ntfs
- •Структура файлов ntfs
- •Каталоги ntfs
- •Файловые операции фс с запоминанием и без запоминания состояния операций
- •Открытие файла
- •Обмен данными с файлом
- •Блокировки файлов
- •Стандартные файлы ввода и вывода, перенаправление вывода
- •Контроль доступа к файлам Файл как разделяемый ресурс
- •Механизм контроля доступа
- •Контроль доступа в ос Unix
- •Контроль доступа в ос семейства Windows nt Общая характеристика
- •Разрешения на доступ к каталогам и файлам
- •Встроенные группы пользователей и их права
- •Задачи и упражнения
- •Глава 8. Дополнительные возможности файловых систем
- •Специальные файлы и аппаратные драйверы Специальные файлы как универсальный интерфейс
- •Структурирование аппаратных драйверов
- •Структура драйвера ос семейства Windows nt
- •Структура драйвера Unix
- •Блок-ориентированные драйверы
- •Байт-ориентированные драйверы
- •Отображаемые на память файлы
- •Дисковый кэш
- •Традиционный дисковый кэш
- •Дисковый кэш на основе виртуальной памяти
- •Отказоустойчивость файловых и дисковых систем
- •Восстанавливаемость файловых систем. Причины нарушения целостности файловых систем
- •Протоколирование транзакций
- •Восстанавливаемость файловой системы ntfs
- •Избыточные дисковые подсистемы raid
- •Обмен данными между Процессами и потоками
- •Конвейеры
- •Именованные конвейеры
- •Очереди сообщений
- •Разделяемая память
- •Задачи и упражнения
- •Глава 9. Сеть как транспортная система
- •Роль сетевых транспортных средств ос
- •Коммутация пакетов Пакеты
- •Буферы и очереди
- •Методы продвижения пакетов
- •Протокол и стек протоколов
- •Семиуровневая модель osi
- •Физический уровень
- •Канальный уровень
- •Сетевой уровень
- •Транспортный уровень
- •Сеансовый уровень
- •Уровень представления
- •Прикладной уровень
- •Стек tcp/ip Структура стека
- •Классы ip-адресов
- •Использование масок
- •Частные и публичные iр-адреса
- •Символьные имена и dns
- •Протокол dhcp
- •Ручное конфигурирование таблиц
- •Протоколы маршрутизации
- •Реализация стека протоколов в универсальной ос
- •Структура транспортных средств универсальной ос
- •Конфигурирование параметров стека tcp/ip
- •Функциональная схема маршрутизатора
- •Основные характеристики Cisco ios
- •Модульная структура ios
- •Прерывания и управление процессами
- •Организация памяти
- •Работа с буферами пакетов
- •Программная маршрутизация и ускоренная коммутация
- •Поддержка QoS
- •Задачи и упражнения
- •Глава 10. Концепции распределенной обработки в сетевых ос
- •Модели сетевых служб и распределенных приложений
- •Разделение приложений на части
- •Двухзвенные схемы
- •Трехзвенные схемы
- •Механизм передачи сообщений в распределенных системах
- •Синхронизация
- •Буферизация в примитивах передачи сообщений
- •Способы адресации
- •Надежные и ненадежные примитивы
- •Механизм Sockets ос Unix
- •Вызов удаленных процедур
- •Концепция удаленного вызова процедур
- •Генерация стабов
- •Формат rPp-сообщений
- •Связывание клиента с сервером
- •Особенности реализации rpc на примере систем Sun rpc и dce rpc
- •Задачи и упражнения
- •Глава 11. Сетевые службы
- •Сетевая файловая система
- •Модель неоднородной сетевой файловой системы
- •Модель загрузки-выгрузки и модель удаленного доступа
- •Архитектурные решения
- •Производительность, надежность и безопасность сетевой файловой системы
- •Семантика разделения файлов
- •Файловые stateful- и stateless-cepверы
- •Место расположения кэша
- •Способы распространения модификаций
- •Проверка достоверности кэша
- •Репликация файлов
- •Прозрачность репликации
- •Согласование реплик
- •Пример. Протокол передачи файлов ftp
- •Пример. Файловая система nfs
- •Справочная сетевая служба Назначение справочной службы
- •Архитектура справочной службы
- •Децентрализованная модель
- •Централизованная модель
- •Централизованная модель с резервированием
- •Декомпозиция справочной службы на домены
- •Распределенная модель
- •Основные концепции справочной службы Active Directory Домены, контроллеры доменов
- •Объекты
- •Глобальный каталог
- •Иерархическая структура Active Directory
- •Иерархия организационных единиц
- •Иерархия доменов. Доверительные отношения
- •Пространство имен
- •Репликация в Active Directory
- •Межсетевое взаимодействие
- •Основные подходы к организации межсетевого взаимодействия
- •Трансляция
- •Мультиплексирование стеков протоколов
- •Инкапсуляция протоколов
- •Задачи и упражнения
- •Глава 12. Сетевая безопасность
- •Основные понятия безопасности Конфиденциальность, целостность и доступность данных
- •Классификация угроз
- •Системный подход к обеспечению безопасности
- •Политика безопасности
- •Базовые технологии безопасности
- •Шифрование
- •Симметричные алгоритмы шифрования
- •Несимметричные алгоритмы шифрования
- •Криптоалгоритм rsa
- •Односторонние функции шифрования
- •Аутентификация, авторизация, аудит Аутентификация
- •Авторизация доступа
- •Технология защищенного канала
- •Технологии аутентификации Сетевая аутентификация на основе многоразового пароля
- •Аутентификация с использованием одноразового пароля
- •Синхронизация по времени
- •Использование слова-вызова
- •Аутентификация на основе сертификатов
- •Сертифицирующие центры
- •Инфраструктура с открытыми ключами
- •Аутентификация информации
- •Цифровая подпись
- •Аутентификация программных кодов
- •Система Kerberos
- •Первичная аутентификация
- •Получение разрешения на доступ к ресурсному серверу
- •Получение доступа к ресурсу
- •Достоинства и недостатки
- •Задачи и упражнения
- •Ответы к задачам и упражнениям Глава 1
- •Глава 2
- •Глава 3
- •Глава 4
- •Глава 5
- •Глава 6
- •Глава 7
- •Глава 8
- •Глава 9
- •Глава 10
- •Глава 11
- •Глава 12
- •Рекомендуемая литература
- •Сетевые операционные системы: Учебник для вузов
Механизм прерываний
Процессор Pentium поддерживает векторную схему прерываний, с помощью которой может быть вызвано 256 процедур обработки прерываний (вектор имеет длину 1 байт). Соответственно, таблица процедур обработки прерываний имеет 256 элементов, которые в реальном режиме работы процессора состоят из дальних адресов (CS:IP) этих процедур, а в защищенном режиме — из дескрипторов.
Прерывания, которые обрабатывает Pentium, делятся на следующие классы:
аппаратные (внешние) прерывания — источником таких прерываний является сигнал на входе процессора;
исключения (exceptions) — внутренние прерывания процессора;
программные прерывания происходят по команде INT.
Аппаратные прерывания бывают маскируемыми и немаскируемыми.
Маскируемые прерывания вызываются сигналом INTR на одном из входов микросхемы процессора. При его возникновении процессор завершает выполнение очередной инструкции, сохраняет в стеке значение регистра признаков программы EFLAGS и адреса возврата, а затем считывает с входов шины данных байт вектора прерываний и в соответствии с его значением передает управление одной из 256 процедур обработки прерываний.
Маскируемость прерываний управляется флагом разрешения прерываний IF (Interrupt Flag), находящимся в регистре EFLAGS процессора. При IF = 1 маскируемые прерывания разрешены, а при IF = 0 — запрещены. Для явного управления флагом IF в процессоре имеются чувствительнее к уровню привилегий инструкции разрешения маскируемых прерываний STI (SeT Interrupt flag) и запрета маскируемых прерываний CLI (CLear Interrupt flag). Эти инструкции разрешается выполнять при CPL <= IOPL. Кроме того, состояние флага изменяется неявным образом в некоторых ситуациях, например, он сбрасывается процессором при распознавании сигнала INTR, чтобы процессор не входил во вложенные циклы процедуры обработки одного и того же прерывания. Процедура обработки прерывания завершается инструкцией IRET, по которой происходит извлечение из стека признаков EFLAGS, адреса возврата, установка флага разрешения прерываний IF и передача управления по адресу возврата. Для маскируемых прерываний в процессоре отведены процедуры обработки прерываний с номерами 32 - 255. Соответствие между сигналом запроса прерывания на шине ввода-вывода (например, сигналом IRQn на шине PCI) и значением вектора задается внешним по отношению к Процессору блоком компьютера контроллером прерываний.
Немаскируемое аппаратное прерывание происходит при появлении сигнала NMI (Non Maskable Interrupt) на входе процессора. Этот сигнал всегда прерывает работу процессора вне зависимости от значения флага IF. При обработке немаскируемого прерывания вектор не считывается, а управление всегда передается процедуре с номером 2, описываемой третьим элементом таблицы процедур обработки прерываний (нумерация в этой таблице начинается с нуля). Немаскируемые прерывания предназначаются для реакции на «сверхважные» для компьютерной системы события, например сбой по питанию. В ходе процедуры обслуживания немаскируемого прерывания процессор не реагирует на другие запросы немаскируемых и маскируемых прерываний до тех пор, пока не будет выполнена команда IRET. Если при обработке немаскируемого прерывания возникает новый сигнал NMI, то он фиксируется и обрабатывается после завершения обработки текущего прерывания, то есть после выполнения команды IRET.
Исключения делятся в процессоре Pentium на отказы, ловушки и аварийные завершения.
Отказы (faults) соответствуют некорректным ситуациям, которые выявляются до выполнения инструкции, например, при обращении по адресу, находящемуся в отсутствующей в оперативной памяти странице (страничный отказ). После обработки исключения-отказа процессор повторяет выполнения команды, которую он не смог выполнить из-за отказа.
Ловушки (traps) обрабатываются процессором после выполнения инструкции, например, при возникновении переполнения. После обработки процессор выполняет инструкцию, следующую за той, которая вызвала исключение.
Аварийные завершения (aborts) соответствуют ситуациям, когда невозможно точно определить команду, вызвавшую прерывание. Чаще всего это происходит во время серьезных отказов, связанных со сбоями в работе аппаратуры компьютера. Для обработки исключений в таблице прерываний отводятся номера 0-31.
Программные прерывания в процессоре Pentium происходят при выполнении инструкции INT с однобайтовым аргументом, в котором указывается вектор прерывания. Общая длина инструкции INT — два байта, исключение составляет инструкция INT 3, которая целиком помещается в один байт — это удобно при отладке программ, когда инструкция INT заменяет первый байт любой команды, вызывая переход на процедуру отладки. Программные прерывания подобно ловушкам обрабатываются после выполнения соответствующей инструкции INT, а возврат происходит в следующую инструкцию. Программное прерывание может вызвать любую из 256 процедур обработки прерываний, указанных в таблице прерываний.
При одновременном возникновении запросов прерываний различных типов процессор Pentium разрешает коллизию с помощью приоритетов. Немаскируемые прерывания имеют более высокий приоритет, чем маскируемые. Приоритетность внутри маскируемых прерываний устанавливается не процессором, а контроллером прерываний (процессор не может этого сделать, так как для него все маскируемые запросы представлены одним сигналом INTR). Проверка некорректных ситуаций, порождающих исключения (в том числе и при выполнении одной команды), выполняется в процессоре в соответствии с определенной последовательностью.
Таблица прерываний в реальном режиме состоит из 256 элементов, каждый из которых имеет длину в 4 байта и представляет собой дальний адрес (CS:IP) процедуры обработки прерываний. Таблица прерываний реального режима всегда находится в фиксированном месте физической памяти — с начального адреса 00000 по адрес 003FF. В защищенном режиме таблица прерываний носит название IDT (Interrupt Descriptor Table) и может располагаться в любом месте физической памяти. Ее начало (32-разрядный физический адрес) и размер (16 бит) можно найти в регистре системных адресов IDTR. Каждый из 256 элементов таблицы прерываний представляет собой 8-байтный дескриптор. В таблице прерываний могут находиться только дескрипторы определенного типа — дескрипторы шлюзов прерываний, ловушек и задач.
Шлюзы задач уже рассматривались, они используется всегда для переключения с задачи на задачу.
Шлюзы прерываний и ловушек специально вводятся для вызова процедур обработки прерываний. Если для вызова процедуры обработки прерывания используется шлюз задач, то происходит смена процесса, а при завершении обработки — возврат к прерванному процессу. Обычно обслуживание прерываний со сменой процесса (и запоминанием его контекста) применяется для внешних прерываний, которые не связаны с текущим процессом, например, когда принтер с помощью прерывания требует загрузить в его буфер новую порцию распечатываемых данных приостановленного процесса.
Шлюзы прерываний и ловушек не вызывают смены контекста задачи, следовательно, процедуры обработки прерываний в этом случае вызываются быстрее, чем при использовании шлюза задачи. Формат дескриптора шлюза прерывания и ловушки аналогичен формату дескриптора шлюза вызова, и обработка процессором этих шлюзов во многом аналогична вызову процедуры через шлюз вызова. Отличие состоит в том, что при вызове процедуры через шлюз прерываний сбрасывается флаг IF и тем самым запрещаются вложенные прерывания. При использовании шлюза ловушки сброса флага IF не происходит, но в стек при некоторых видах исключений дополнительно помещается код ошибки, вызвавшей исключение.
