- •Сетевые операционные системы
- •Глава 1. Эволюция операционных систем 22
- •Глава 2. Назначение и функции операционной системы 59
- •Глава 3. Архитектура операционной системы 95
- •Глава 4. Процессы и потоки 139
- •Глава 5. Управление памятью 260
- •Глава 6. Аппаратная поддержка мультипрограммирования на примере процессора Pentium 333
- •Глава 7. Ввод-вывод и файловая система 389
- •Глава 8. Дополнительные возможности файловых систем 512
- •Глава 9. Сеть как транспортная система 576
- •Глава 10. Концепции распределенной обработки в сетевых ос 686
- •Глава 11. Сетевые службы 736
- •Глава 12. Сетевая безопасность 855
- •Благодарности
- •Предисловие авторов ко второму изданию
- •Для кого эта книга
- •Структура книги
- •Глава 9 является компактным введением в сетевые технологии, о ее содержании уже рассказывалось при описании отличий второй редакции учебника.
- •От издательства
- •Глава 1. Эволюция операционных систем
- •Первые операционные системы
- •Мультипрограммные операционные системы для мэйнфреймов
- •Первые сетевые операционные системы
- •Операционные системы миникомпьютеров и первые локальные сети
- •Развитие операционных систем в 80-е годы
- •Развитие операционных систем в 90-е годы
- •Современный этап развития операционных систем персональных компьютеров
- •Надежность
- •Простота обслуживания
- •Пользовательский интерфейс
- •Средства информационной самоорганизации
- •Защита данных
- •Виртуальные распределенные вычислительные системы суперкомпьютеров
- •Задачи и упражнения
- •Глава 2. Назначение и функции операционной системы
- •Операционные системы для автономного компьютера
- •Ос как виртуальная машина
- •Ос как система управления ресурсами
- •Функциональные компоненты операционной системы автономного компьютера
- •Управление процессами
- •Управление памятью
- •Управление файлами и внешними устройствами
- •Защита данных и администрирование
- •Интерфейс прикладного программирования
- •Пользовательский интерфейс
- •Сетевые операционные системы
- •Функциональные компоненты сетевой ос
- •Сетевые службы и сетевые сервисы
- •Встроенные сетевые службы и сетевые оболочки
- •Одноранговые и серверные сетевые операционные системы
- •Ос в одноранговых сетях
- •Ос в сетях с выделенными серверами
- •Требования к современным операционным системам
- •Задачи и упражнения
- •Глава 3. Архитектура операционной системы
- •Ядро и вспомогательные модули ос
- •Ядро в привилегированном режиме
- •Многослойная структура ос
- •Аппаратная зависимость и переносимость ос
- •Типовые средства аппаратной поддержки ос
- •Машинно-зависимые компоненты ос
- •Переносимость операционной системы
- •Микроядерная архитектура Концепция
- •Преимущества и недостатки микроядерной архитектуры
- •Совместимость и множественные прикладные среды
- •Двоичная совместимость и совместимость исходных текстов
- •Трансляция библиотек
- •Способы реализации прикладных программных сред
- •Система виртуальных машин
- •Задачи и упражнения
- •Глава 4. Процессы и потоки
- •Мультипрограммирование
- •Мультипрограммирование в системах пакетной обработки
- •Мультипрограммирование в системах разделения времени
- •Мультипрограммирование в системах реального времени
- •Мультипроцессорная обработка
- •Планирование процессов и потоков
- •Понятия «процесс» и «поток»
- •Создание процессов и потоков
- •If(fork()) { действия родительского процесса }
- •Планирование и диспетчеризация потоков
- •Состояния потока
- •Вытесняющие и не вытесняющие алгоритмы планирования
- •Алгоритмы планирования, основанные на квантовании
- •Алгоритмы планирования, основанные на приоритетах
- •Смешанные алгоритмы планирования
- •Планирование в системах реального времени
- •Моменты перепланирования
- •Мультипрограммирование на основе прерываний Назначение и типы прерываний
- •Аппаратная поддержка прерываний
- •Программные прерывания
- •Диспетчеризация и приоритезация прерываний в ос
- •Функции централизованного диспетчера прерываний на примере ос семейства Windows nt
- •Процедуры обработки прерываний и текущий процесс
- •Системные вызовы
- •Синхронизация процессов и потоков Цели и средства синхронизации
- •Необходимость синхронизации и гонки
- •Критическая секция
- •Блокирующие переменные
- •Семафоры
- •Системные синхронизирующие объекты
- •Задачи и упражнения
- •Глава 1. Эволюция операционных систем 22
- •Глава 2. Назначение и функции операционной системы 59
- •Глава 3. Архитектура операционной системы 95
- •Глава 4. Процессы и потоки 139
- •Глава 5. Управление памятью 260
- •Глава 6. Аппаратная поддержка мультипрограммирования на примере процессора Pentium 333
- •Глава 7. Ввод-вывод и файловая система 389
- •Глава 8. Дополнительные возможности файловых систем 512
- •Глава 9. Сеть как транспортная система 576
- •Глава 10. Концепции распределенной обработки в сетевых ос 686
- •Глава 11. Сетевые службы 736
- •Глава 12. Сетевая безопасность 855
- •Глава 5. Управление памятью
- •Функции ос по управлению памятью
- •Типы адресов
- •Риc. 5.6. Общая и индивидуальные части виртуальных адресных пространств
- •Алгоритмы распределения памяти
- •Фиксированные разделы
- •Динамические разделы
- •Перемещаемые разделы
- •Виртуальная память
- •Страничное распределение
- •Оптимизация страничной виртуальной памяти
- •Двухуровневое страничное распределение памяти
- •Сегментно-страничное распределение
- •Разделяемые сегменты памяти
- •Кэширование данных. Универсальная концепция
- •Иерархия памяти
- •Принцип действия кэш-памяти
- •Проблема согласования данных
- •Отображение основной памяти на кэш
- •Схемы выполнения запросов в системах с кэш-памятью
- •Задачи и упражнения
- •Глава 6. Аппаратная поддержка мультипрограммирования на примере процессора Pentium
- •Регистры процессора
- •Привилегированные команды
- •Средства поддержки сегментации памяти
- •Виртуальное адресное пространство
- •Преобразование адресов
- •Защита данных при сегментной организации памяти
- •Сегментно-страничный механизм
- •Средства вызова процедур и задач
- •Вызов процедур
- •Вызов задач
- •Механизм прерываний
- •Кэширование в процессоре Pentium
- •Буфер ассоциативной трансляции
- •Кэш первого уровня
- •Совместная работа кэшей разного уровня
- •Задачи и упражнения
- •Глава 7. Ввод-вывод и файловая система
- •Задачи ос по управлению файлами и устройствами
- •Согласование скоростей обмена и кэширование данных
- •Разделение устройств и данных
- •Программный интерфейс к устройствам
- •Поддержка широкого спектра драйверов
- •Динамическая загрузка и выгрузка драйверов
- •Поддержка файловых систем
- •Синхронный и асинхронный режимы
- •Многослойная модель подсистемы ввода-вывода Общая схема
- •Менеджер ввода-вывода
- •Многоуровневые драйверы
- •Логическая организация файловой системы
- •Цели и задачи файловой системы
- •Типы файлов
- •Иерархическая структура файловой системы
- •Имена файлов
- •Монтирование
- •Атрибуты файлов
- •Логическая организация файла
- •Физическая организация файловой системы
- •Диски, разделы, секторы, кластеры
- •Физическая организация и адресация файла
- •Физическая организация fat
- •Физическая организация s5 и ufs
- •Физическая организация ntfs
- •Структура тома ntfs
- •Структура файлов ntfs
- •Каталоги ntfs
- •Файловые операции фс с запоминанием и без запоминания состояния операций
- •Открытие файла
- •Обмен данными с файлом
- •Блокировки файлов
- •Стандартные файлы ввода и вывода, перенаправление вывода
- •Контроль доступа к файлам Файл как разделяемый ресурс
- •Механизм контроля доступа
- •Контроль доступа в ос Unix
- •Контроль доступа в ос семейства Windows nt Общая характеристика
- •Разрешения на доступ к каталогам и файлам
- •Встроенные группы пользователей и их права
- •Задачи и упражнения
- •Глава 8. Дополнительные возможности файловых систем
- •Специальные файлы и аппаратные драйверы Специальные файлы как универсальный интерфейс
- •Структурирование аппаратных драйверов
- •Структура драйвера ос семейства Windows nt
- •Структура драйвера Unix
- •Блок-ориентированные драйверы
- •Байт-ориентированные драйверы
- •Отображаемые на память файлы
- •Дисковый кэш
- •Традиционный дисковый кэш
- •Дисковый кэш на основе виртуальной памяти
- •Отказоустойчивость файловых и дисковых систем
- •Восстанавливаемость файловых систем. Причины нарушения целостности файловых систем
- •Протоколирование транзакций
- •Восстанавливаемость файловой системы ntfs
- •Избыточные дисковые подсистемы raid
- •Обмен данными между Процессами и потоками
- •Конвейеры
- •Именованные конвейеры
- •Очереди сообщений
- •Разделяемая память
- •Задачи и упражнения
- •Глава 9. Сеть как транспортная система
- •Роль сетевых транспортных средств ос
- •Коммутация пакетов Пакеты
- •Буферы и очереди
- •Методы продвижения пакетов
- •Протокол и стек протоколов
- •Семиуровневая модель osi
- •Физический уровень
- •Канальный уровень
- •Сетевой уровень
- •Транспортный уровень
- •Сеансовый уровень
- •Уровень представления
- •Прикладной уровень
- •Стек tcp/ip Структура стека
- •Классы ip-адресов
- •Использование масок
- •Частные и публичные iр-адреса
- •Символьные имена и dns
- •Протокол dhcp
- •Ручное конфигурирование таблиц
- •Протоколы маршрутизации
- •Реализация стека протоколов в универсальной ос
- •Структура транспортных средств универсальной ос
- •Конфигурирование параметров стека tcp/ip
- •Функциональная схема маршрутизатора
- •Основные характеристики Cisco ios
- •Модульная структура ios
- •Прерывания и управление процессами
- •Организация памяти
- •Работа с буферами пакетов
- •Программная маршрутизация и ускоренная коммутация
- •Поддержка QoS
- •Задачи и упражнения
- •Глава 10. Концепции распределенной обработки в сетевых ос
- •Модели сетевых служб и распределенных приложений
- •Разделение приложений на части
- •Двухзвенные схемы
- •Трехзвенные схемы
- •Механизм передачи сообщений в распределенных системах
- •Синхронизация
- •Буферизация в примитивах передачи сообщений
- •Способы адресации
- •Надежные и ненадежные примитивы
- •Механизм Sockets ос Unix
- •Вызов удаленных процедур
- •Концепция удаленного вызова процедур
- •Генерация стабов
- •Формат rPp-сообщений
- •Связывание клиента с сервером
- •Особенности реализации rpc на примере систем Sun rpc и dce rpc
- •Задачи и упражнения
- •Глава 11. Сетевые службы
- •Сетевая файловая система
- •Модель неоднородной сетевой файловой системы
- •Модель загрузки-выгрузки и модель удаленного доступа
- •Архитектурные решения
- •Производительность, надежность и безопасность сетевой файловой системы
- •Семантика разделения файлов
- •Файловые stateful- и stateless-cepверы
- •Место расположения кэша
- •Способы распространения модификаций
- •Проверка достоверности кэша
- •Репликация файлов
- •Прозрачность репликации
- •Согласование реплик
- •Пример. Протокол передачи файлов ftp
- •Пример. Файловая система nfs
- •Справочная сетевая служба Назначение справочной службы
- •Архитектура справочной службы
- •Децентрализованная модель
- •Централизованная модель
- •Централизованная модель с резервированием
- •Декомпозиция справочной службы на домены
- •Распределенная модель
- •Основные концепции справочной службы Active Directory Домены, контроллеры доменов
- •Объекты
- •Глобальный каталог
- •Иерархическая структура Active Directory
- •Иерархия организационных единиц
- •Иерархия доменов. Доверительные отношения
- •Пространство имен
- •Репликация в Active Directory
- •Межсетевое взаимодействие
- •Основные подходы к организации межсетевого взаимодействия
- •Трансляция
- •Мультиплексирование стеков протоколов
- •Инкапсуляция протоколов
- •Задачи и упражнения
- •Глава 12. Сетевая безопасность
- •Основные понятия безопасности Конфиденциальность, целостность и доступность данных
- •Классификация угроз
- •Системный подход к обеспечению безопасности
- •Политика безопасности
- •Базовые технологии безопасности
- •Шифрование
- •Симметричные алгоритмы шифрования
- •Несимметричные алгоритмы шифрования
- •Криптоалгоритм rsa
- •Односторонние функции шифрования
- •Аутентификация, авторизация, аудит Аутентификация
- •Авторизация доступа
- •Технология защищенного канала
- •Технологии аутентификации Сетевая аутентификация на основе многоразового пароля
- •Аутентификация с использованием одноразового пароля
- •Синхронизация по времени
- •Использование слова-вызова
- •Аутентификация на основе сертификатов
- •Сертифицирующие центры
- •Инфраструктура с открытыми ключами
- •Аутентификация информации
- •Цифровая подпись
- •Аутентификация программных кодов
- •Система Kerberos
- •Первичная аутентификация
- •Получение разрешения на доступ к ресурсному серверу
- •Получение доступа к ресурсу
- •Достоинства и недостатки
- •Задачи и упражнения
- •Ответы к задачам и упражнениям Глава 1
- •Глава 2
- •Глава 3
- •Глава 4
- •Глава 5
- •Глава 6
- •Глава 7
- •Глава 8
- •Глава 9
- •Глава 10
- •Глава 11
- •Глава 12
- •Рекомендуемая литература
- •Сетевые операционные системы: Учебник для вузов
Глава 6. Аппаратная поддержка мультипрограммирования на примере процессора Pentium
Аппаратные средства поддержки мультипрограммирования имеются во всех современных процессорах. Несмотря на различия в реализации, для большинства типов процессоров эти средства имеют общие черты.
Это в полной мере относится и к рассматриваемому далее популярному семейству процессоров Intel: 80386, 80486, Pentium, Pentium Pro, Pentium II, Celeron и Pentium III, Pentium 4, Pentium D и Core 2. Большая часть моделей этих процессоров была 32-разрядной, а начиная с процессоров Pentium 4, поддерживается и 64-разрядная архитектура, к тому же последние 64-разрядные модели процессоров позволяют выполнять команды 32-разрядной архитектуры, то есть обладают обратной совместимостью.
Средства поддержки операционной системы во всех этих процессорах построены почти идентично, а отличия сводятся практически только к количеству разрядов команды и/или наличию нескольких дополнительных команд, не связанных напрямую с организацией вычислительного процесса. В данной главе средства аппаратной поддержки мультипрограммирования рассматриваются на примере 32-разрядного режима этих процессоров, которые здесь мы будем условно называть «процессоры Pentium».
Регистры процессора
В организации вычислительного процесса важную роль играют регистры процессора, которые в процессорах Pentium делятся на следующие группы:
регистры общего назначения;
регистры сегментов;
указатель инструкций;
регистр флагов;
управляющие регистры;
регистры системных адресов;
регистры отладки и тестирования;
регистры математического сопроцессора, выполняющего операции с плавающей точкой.
В процессоре Pentium имеется восемь 32-разрядных регистров общего назначения. Четыре из них, которые можно условно назвать А, В, С и D, используются для временного хранения операндов арифметических, логических и других команд. Программист может обращаться к этим регистрам как к единому целому, используя обозначения ЕАХ, ЕВХ, ЕСХ, EDX, а также к некоторым их частям, как это показано на рис. 6.1. Здесь обозначение AL (L — Low) относится к первому, самому младшему байту регистра ЕАХ, АН (Н — High) — к следующему по старшинству байту, а АХ означает оба младших байта регистра. Приставка Е в обозначении этих регистров (а также некоторых других) образована от слова Extended (расширенный), указывая на то, что в прежних моделях процессоров Intel эти регистры были 16-разрядными, а затем их разрядность была увеличена до 32. •
Рис. 6.1. Основные регистры процессора Pentium
Остальные четыре регистра общего назначения — ESI, EDI, EBP и ESP — предназначены для задания смещения адреса относительно начала некоторого сегмента данных. Эти регистры используются совместно с регистрами сегментов в системе адресации процессора Pentium для задания виртуального адреса, который затем с помощью таблиц страниц отображается на физический адрес.
Регистры сегментов CS, SS, DS, ES, FS и GS в защищенном режиме ссылаются на дескрипторы сегментов памяти — описатели, в которых содержатся такие параметры сегментов, как базовый адрес, размер сегмента, атрибуты защиты и некоторые другие. Регистры сегментов хранят 16-разрядное число, называемое селектором, в котором 12 старших разрядов представляет собой индекс в таблице дескрипторов сегментов, 1 разряд указывает, в какой из двух таблиц, GDT или LDT, находится дескриптор, а 3 разряда поля RPL хранят значение уровня привилегий запроса к данному сегменту. Регистр CS (Code Segment) предназначен для хранения индекса дескриптора кодового сегмента, регистр SS (Stack Segment) — дескриптора сегмента стека, а остальные регистры используются для указания на дескрипторы сегментов данных. Все регистры сегментов, кроме CS, программно доступны, то есть в них можно загрузить новое значение селектора соответствующей командой (например, LDS). Значение регистра CS изменяется при выполнении команд межсегментных вызовов CALL и переходов JHP, а также при переключении задач1.
Указатель инструкций EIP содержит смещение адреса текущей инструкции, которое используется совместно с регистром CS для получения соответствующего виртуального адреса.
Регистр флагов EFLAGS содержит признаки, характеризующие результат выполнения операции, например флаги знака, нуля, переполнения, паритета, переноса и некоторые другие. Кроме того, здесь хранятся некоторые признаки, устанавливаемые и анализируемые механизмом прерываний, в частности флаг разрешения аппаратных прерываний IF.
В процессоре Pentium имеется пять управляющих регистров — CRO, CR1, CR2, CR3 и CR4, которые хранят признаки и данные, характеризующие общее состояния процессора (рис. 6.2).
Рис. 6.2. Управляющие и системные регистры процессора Pentium
Регистр CR0 содержит все основные признаки, существенно влияющие на работу процессора, такие как: признаки реального/защищенного режима работы, включения/выключения страничного механизма системы виртуальной памяти, а также признаки, влияющие на работу кэша и выполнение команд с плавающей точкой. Младшие два байта регистра CR0 имеют название «слово состояния машины» (Mashine State Word, MSW). Это название использовалось в процессоре 80286 для обозначения управляющего регистра, имевшего аналогичное назначение.
Регистр CR1 в настоящее время не используется (зарезервирован).
Регистр CR2 содержит линейный виртуальный адрес, который вызвал так называемый страничный отказ (отсутствие страницы в оперативной памяти или отказ из-за нарушения прав доступа).
Регистр CR3 содержит физический адрес таблицы разделов, используемой страничным механизмом процессора.
Регистр CR4 хранит признаки, разрешающие работу так называемых архитектурных расширений, например, признак возможности использования страниц размером 4 Мбайта и т. п.
Регистры системных адресов содержат адреса важных системных таблиц и структур, используемых при управлении процессами и памятью.
Регистр GDTR (Global Descriptor Table Register) содержит физический 32-разрядный адрес глобальной таблицы дескрипторов (Global Descriptor Table, GDT) сегментов памяти, образующих общую часть виртуального адресного пространства всех процессов.
Регистр IDTR (Interrupt Descriptor Table Register) хранит физический 32-разрядный адрес таблицы дескрипторов прерываний (Interrupt Descriptor Table, IDT), используемой для вызова процедур обработки прерываний в защищенном режиме работы процессора. Помимо этих адресов, в регистрах GDTR и IDTR хранятся 16-разрядные лимиты, задающие ограничения на размер соответствующих таблиц.
Два 16-разрядных регистра хранят не физические адреса системных структур, а значения индексов дескрипторов этих структур в таблице GDT, что позволяет косвенно получить соответствующие физические адреса.
Регистр TR (Task Register) содержит индекс дескриптора сегмента состояния задачи TSS.
Регистр LD,TR (Local Descriptor Table Register) содержит индекс дескриптора сегмента локальной таблицы дескрипторов LDT сегментов памяти, образующих индивидуальную часть виртуального адресного пространства процесса.
Регистры отладки хранят значения точек останова, а регистры тестирования позволяют проверить корректность работы внутренних блоков процессора.
