- •Сетевые операционные системы
- •Глава 1. Эволюция операционных систем 22
- •Глава 2. Назначение и функции операционной системы 59
- •Глава 3. Архитектура операционной системы 95
- •Глава 4. Процессы и потоки 139
- •Глава 5. Управление памятью 260
- •Глава 6. Аппаратная поддержка мультипрограммирования на примере процессора Pentium 333
- •Глава 7. Ввод-вывод и файловая система 389
- •Глава 8. Дополнительные возможности файловых систем 512
- •Глава 9. Сеть как транспортная система 576
- •Глава 10. Концепции распределенной обработки в сетевых ос 686
- •Глава 11. Сетевые службы 736
- •Глава 12. Сетевая безопасность 855
- •Благодарности
- •Предисловие авторов ко второму изданию
- •Для кого эта книга
- •Структура книги
- •Глава 9 является компактным введением в сетевые технологии, о ее содержании уже рассказывалось при описании отличий второй редакции учебника.
- •От издательства
- •Глава 1. Эволюция операционных систем
- •Первые операционные системы
- •Мультипрограммные операционные системы для мэйнфреймов
- •Первые сетевые операционные системы
- •Операционные системы миникомпьютеров и первые локальные сети
- •Развитие операционных систем в 80-е годы
- •Развитие операционных систем в 90-е годы
- •Современный этап развития операционных систем персональных компьютеров
- •Надежность
- •Простота обслуживания
- •Пользовательский интерфейс
- •Средства информационной самоорганизации
- •Защита данных
- •Виртуальные распределенные вычислительные системы суперкомпьютеров
- •Задачи и упражнения
- •Глава 2. Назначение и функции операционной системы
- •Операционные системы для автономного компьютера
- •Ос как виртуальная машина
- •Ос как система управления ресурсами
- •Функциональные компоненты операционной системы автономного компьютера
- •Управление процессами
- •Управление памятью
- •Управление файлами и внешними устройствами
- •Защита данных и администрирование
- •Интерфейс прикладного программирования
- •Пользовательский интерфейс
- •Сетевые операционные системы
- •Функциональные компоненты сетевой ос
- •Сетевые службы и сетевые сервисы
- •Встроенные сетевые службы и сетевые оболочки
- •Одноранговые и серверные сетевые операционные системы
- •Ос в одноранговых сетях
- •Ос в сетях с выделенными серверами
- •Требования к современным операционным системам
- •Задачи и упражнения
- •Глава 3. Архитектура операционной системы
- •Ядро и вспомогательные модули ос
- •Ядро в привилегированном режиме
- •Многослойная структура ос
- •Аппаратная зависимость и переносимость ос
- •Типовые средства аппаратной поддержки ос
- •Машинно-зависимые компоненты ос
- •Переносимость операционной системы
- •Микроядерная архитектура Концепция
- •Преимущества и недостатки микроядерной архитектуры
- •Совместимость и множественные прикладные среды
- •Двоичная совместимость и совместимость исходных текстов
- •Трансляция библиотек
- •Способы реализации прикладных программных сред
- •Система виртуальных машин
- •Задачи и упражнения
- •Глава 4. Процессы и потоки
- •Мультипрограммирование
- •Мультипрограммирование в системах пакетной обработки
- •Мультипрограммирование в системах разделения времени
- •Мультипрограммирование в системах реального времени
- •Мультипроцессорная обработка
- •Планирование процессов и потоков
- •Понятия «процесс» и «поток»
- •Создание процессов и потоков
- •If(fork()) { действия родительского процесса }
- •Планирование и диспетчеризация потоков
- •Состояния потока
- •Вытесняющие и не вытесняющие алгоритмы планирования
- •Алгоритмы планирования, основанные на квантовании
- •Алгоритмы планирования, основанные на приоритетах
- •Смешанные алгоритмы планирования
- •Планирование в системах реального времени
- •Моменты перепланирования
- •Мультипрограммирование на основе прерываний Назначение и типы прерываний
- •Аппаратная поддержка прерываний
- •Программные прерывания
- •Диспетчеризация и приоритезация прерываний в ос
- •Функции централизованного диспетчера прерываний на примере ос семейства Windows nt
- •Процедуры обработки прерываний и текущий процесс
- •Системные вызовы
- •Синхронизация процессов и потоков Цели и средства синхронизации
- •Необходимость синхронизации и гонки
- •Критическая секция
- •Блокирующие переменные
- •Семафоры
- •Системные синхронизирующие объекты
- •Задачи и упражнения
- •Глава 1. Эволюция операционных систем 22
- •Глава 2. Назначение и функции операционной системы 59
- •Глава 3. Архитектура операционной системы 95
- •Глава 4. Процессы и потоки 139
- •Глава 5. Управление памятью 260
- •Глава 6. Аппаратная поддержка мультипрограммирования на примере процессора Pentium 333
- •Глава 7. Ввод-вывод и файловая система 389
- •Глава 8. Дополнительные возможности файловых систем 512
- •Глава 9. Сеть как транспортная система 576
- •Глава 10. Концепции распределенной обработки в сетевых ос 686
- •Глава 11. Сетевые службы 736
- •Глава 12. Сетевая безопасность 855
- •Глава 5. Управление памятью
- •Функции ос по управлению памятью
- •Типы адресов
- •Риc. 5.6. Общая и индивидуальные части виртуальных адресных пространств
- •Алгоритмы распределения памяти
- •Фиксированные разделы
- •Динамические разделы
- •Перемещаемые разделы
- •Виртуальная память
- •Страничное распределение
- •Оптимизация страничной виртуальной памяти
- •Двухуровневое страничное распределение памяти
- •Сегментно-страничное распределение
- •Разделяемые сегменты памяти
- •Кэширование данных. Универсальная концепция
- •Иерархия памяти
- •Принцип действия кэш-памяти
- •Проблема согласования данных
- •Отображение основной памяти на кэш
- •Схемы выполнения запросов в системах с кэш-памятью
- •Задачи и упражнения
- •Глава 6. Аппаратная поддержка мультипрограммирования на примере процессора Pentium
- •Регистры процессора
- •Привилегированные команды
- •Средства поддержки сегментации памяти
- •Виртуальное адресное пространство
- •Преобразование адресов
- •Защита данных при сегментной организации памяти
- •Сегментно-страничный механизм
- •Средства вызова процедур и задач
- •Вызов процедур
- •Вызов задач
- •Механизм прерываний
- •Кэширование в процессоре Pentium
- •Буфер ассоциативной трансляции
- •Кэш первого уровня
- •Совместная работа кэшей разного уровня
- •Задачи и упражнения
- •Глава 7. Ввод-вывод и файловая система
- •Задачи ос по управлению файлами и устройствами
- •Согласование скоростей обмена и кэширование данных
- •Разделение устройств и данных
- •Программный интерфейс к устройствам
- •Поддержка широкого спектра драйверов
- •Динамическая загрузка и выгрузка драйверов
- •Поддержка файловых систем
- •Синхронный и асинхронный режимы
- •Многослойная модель подсистемы ввода-вывода Общая схема
- •Менеджер ввода-вывода
- •Многоуровневые драйверы
- •Логическая организация файловой системы
- •Цели и задачи файловой системы
- •Типы файлов
- •Иерархическая структура файловой системы
- •Имена файлов
- •Монтирование
- •Атрибуты файлов
- •Логическая организация файла
- •Физическая организация файловой системы
- •Диски, разделы, секторы, кластеры
- •Физическая организация и адресация файла
- •Физическая организация fat
- •Физическая организация s5 и ufs
- •Физическая организация ntfs
- •Структура тома ntfs
- •Структура файлов ntfs
- •Каталоги ntfs
- •Файловые операции фс с запоминанием и без запоминания состояния операций
- •Открытие файла
- •Обмен данными с файлом
- •Блокировки файлов
- •Стандартные файлы ввода и вывода, перенаправление вывода
- •Контроль доступа к файлам Файл как разделяемый ресурс
- •Механизм контроля доступа
- •Контроль доступа в ос Unix
- •Контроль доступа в ос семейства Windows nt Общая характеристика
- •Разрешения на доступ к каталогам и файлам
- •Встроенные группы пользователей и их права
- •Задачи и упражнения
- •Глава 8. Дополнительные возможности файловых систем
- •Специальные файлы и аппаратные драйверы Специальные файлы как универсальный интерфейс
- •Структурирование аппаратных драйверов
- •Структура драйвера ос семейства Windows nt
- •Структура драйвера Unix
- •Блок-ориентированные драйверы
- •Байт-ориентированные драйверы
- •Отображаемые на память файлы
- •Дисковый кэш
- •Традиционный дисковый кэш
- •Дисковый кэш на основе виртуальной памяти
- •Отказоустойчивость файловых и дисковых систем
- •Восстанавливаемость файловых систем. Причины нарушения целостности файловых систем
- •Протоколирование транзакций
- •Восстанавливаемость файловой системы ntfs
- •Избыточные дисковые подсистемы raid
- •Обмен данными между Процессами и потоками
- •Конвейеры
- •Именованные конвейеры
- •Очереди сообщений
- •Разделяемая память
- •Задачи и упражнения
- •Глава 9. Сеть как транспортная система
- •Роль сетевых транспортных средств ос
- •Коммутация пакетов Пакеты
- •Буферы и очереди
- •Методы продвижения пакетов
- •Протокол и стек протоколов
- •Семиуровневая модель osi
- •Физический уровень
- •Канальный уровень
- •Сетевой уровень
- •Транспортный уровень
- •Сеансовый уровень
- •Уровень представления
- •Прикладной уровень
- •Стек tcp/ip Структура стека
- •Классы ip-адресов
- •Использование масок
- •Частные и публичные iр-адреса
- •Символьные имена и dns
- •Протокол dhcp
- •Ручное конфигурирование таблиц
- •Протоколы маршрутизации
- •Реализация стека протоколов в универсальной ос
- •Структура транспортных средств универсальной ос
- •Конфигурирование параметров стека tcp/ip
- •Функциональная схема маршрутизатора
- •Основные характеристики Cisco ios
- •Модульная структура ios
- •Прерывания и управление процессами
- •Организация памяти
- •Работа с буферами пакетов
- •Программная маршрутизация и ускоренная коммутация
- •Поддержка QoS
- •Задачи и упражнения
- •Глава 10. Концепции распределенной обработки в сетевых ос
- •Модели сетевых служб и распределенных приложений
- •Разделение приложений на части
- •Двухзвенные схемы
- •Трехзвенные схемы
- •Механизм передачи сообщений в распределенных системах
- •Синхронизация
- •Буферизация в примитивах передачи сообщений
- •Способы адресации
- •Надежные и ненадежные примитивы
- •Механизм Sockets ос Unix
- •Вызов удаленных процедур
- •Концепция удаленного вызова процедур
- •Генерация стабов
- •Формат rPp-сообщений
- •Связывание клиента с сервером
- •Особенности реализации rpc на примере систем Sun rpc и dce rpc
- •Задачи и упражнения
- •Глава 11. Сетевые службы
- •Сетевая файловая система
- •Модель неоднородной сетевой файловой системы
- •Модель загрузки-выгрузки и модель удаленного доступа
- •Архитектурные решения
- •Производительность, надежность и безопасность сетевой файловой системы
- •Семантика разделения файлов
- •Файловые stateful- и stateless-cepверы
- •Место расположения кэша
- •Способы распространения модификаций
- •Проверка достоверности кэша
- •Репликация файлов
- •Прозрачность репликации
- •Согласование реплик
- •Пример. Протокол передачи файлов ftp
- •Пример. Файловая система nfs
- •Справочная сетевая служба Назначение справочной службы
- •Архитектура справочной службы
- •Децентрализованная модель
- •Централизованная модель
- •Централизованная модель с резервированием
- •Декомпозиция справочной службы на домены
- •Распределенная модель
- •Основные концепции справочной службы Active Directory Домены, контроллеры доменов
- •Объекты
- •Глобальный каталог
- •Иерархическая структура Active Directory
- •Иерархия организационных единиц
- •Иерархия доменов. Доверительные отношения
- •Пространство имен
- •Репликация в Active Directory
- •Межсетевое взаимодействие
- •Основные подходы к организации межсетевого взаимодействия
- •Трансляция
- •Мультиплексирование стеков протоколов
- •Инкапсуляция протоколов
- •Задачи и упражнения
- •Глава 12. Сетевая безопасность
- •Основные понятия безопасности Конфиденциальность, целостность и доступность данных
- •Классификация угроз
- •Системный подход к обеспечению безопасности
- •Политика безопасности
- •Базовые технологии безопасности
- •Шифрование
- •Симметричные алгоритмы шифрования
- •Несимметричные алгоритмы шифрования
- •Криптоалгоритм rsa
- •Односторонние функции шифрования
- •Аутентификация, авторизация, аудит Аутентификация
- •Авторизация доступа
- •Технология защищенного канала
- •Технологии аутентификации Сетевая аутентификация на основе многоразового пароля
- •Аутентификация с использованием одноразового пароля
- •Синхронизация по времени
- •Использование слова-вызова
- •Аутентификация на основе сертификатов
- •Сертифицирующие центры
- •Инфраструктура с открытыми ключами
- •Аутентификация информации
- •Цифровая подпись
- •Аутентификация программных кодов
- •Система Kerberos
- •Первичная аутентификация
- •Получение разрешения на доступ к ресурсному серверу
- •Получение доступа к ресурсу
- •Достоинства и недостатки
- •Задачи и упражнения
- •Ответы к задачам и упражнениям Глава 1
- •Глава 2
- •Глава 3
- •Глава 4
- •Глава 5
- •Глава 6
- •Глава 7
- •Глава 8
- •Глава 9
- •Глава 10
- •Глава 11
- •Глава 12
- •Рекомендуемая литература
- •Сетевые операционные системы: Учебник для вузов
Особенности реализации rpc на примере систем Sun rpc и dce rpc
Рассмотрим особенности реализации RPC на примере двух широко распространенных систем удаленного вызова процедур: Sun RPC и DCE RPC. Систма Sun RPC является продуктом компании Sun Microsystems и работает во всех сетевых операционных системах этой компании — SunOS, Solaris, а система DCE RPC — это стандарт консорциума Open Software Foundation для распределенной вычислительной среды (Distributed Computing Environment, DCE). Реализации DCE RPC доступны сегодня для многих сетевых ОС, кроме того, на основе стандарта DCE RPC разработана система Microsoft RPC, применяющаяся в популярных ОС семейства Windows. К сожалению, реализации Sun RPC и DCE RPC несовместимы друг с другом, более того, нет гарантий, что различные реализации RPC, в основе которых лежит стандарт DCE RPC, смогут совместно работать в гетерогенной сети, так как стандарт DCE определяет только базовые свойства механизма удаленного вызова процедур, а каждая реализация добавляет к стандарту большое количество собственных дополнительных функций.
Sun RPC
Система Sun RPC позволяет автоматически генерировать клиентский и серверный стабы — в том случае, если RPC-интерфейс описан на языке IDL, называемом RPC Language (RPCL). Язык RPCL является расширением языка Sun XDR (external Data Representation), который был разработан для системно-независимого представления внешних данных в гетерогенной среде. XDR-представление данных по умолчанию используется в Sun RPC при передаче аргументов и результатов между RPC-клиентом и RPC-сервером.
Механизм Sun RPC обладает некоторыми достаточно жесткими ограничениями.
Одним из них является ограничение на аргументы и результаты удаленных процедур — процедура может иметь только один аргумент и вырабатывать только один результат. Для преодоления этого ограничения в качестве аргумента и результата обычно используется структура данных.
Следующий пример описания интерфейса файловой службы иллюстрирует эту особенность:
Интерфейс однозначно идентифицируется номером программы (FILE_ SERVICE_2 = 0x20000000) и номером версии (FILE_SERVICE_VERS = 1), а процедуры внутри интерфейса — номерами процедур, READ — номером 1 и WRITE — номером 2.
Структура readargs позволяет передать процедуре READ три аргумента — имя файла, позицию (смещение) в файле, с которой нужно начать чтение данных, и количество считываемых байтов. Структура Data позволяет вызывающей процедуре получить результат чтения в массиве buffer и узнать количество реально считанных байтов с помощью переменной n. Аналогично используются структуры writeargs и Data в процедуре записи WRITE.
Результатом обработки описания интерфейса FILE_SERVICE_2 RPCL-компилятором являются несколько файлов, в том числе файлов, описывающих клиентские и серверные стабы. По умолчанию имена стабов процедур образуются путем преобразования имен процедур, указанных в описании интерфейса, в нижний регистр, а также добавлением после нижнего подчеркивания номера версии интерфейса, то есть стабы в нашем примере будут иметь имена read_1 и write_1.
Механизм Sun RPC не поддерживает динамического связывания с сервером с помощью агента связывания. Клиент должен явно указывать сетевой адрес сервера, а для получения номера порта он должен обратиться к модулю отображения портов, работающему на узле сервера. Для взаимодействия с этим модулем система Sub RPC предоставляет в распоряжение клиента системный вызов сlnt_cгеatе, имеющий следующий синтаксис:
client_handle = clnt_create(server_host_name, interface_name.
interface_version, protocol)
Аргумент server_host_name представляет собой имя (символьное DNS-имя или IP-адрес узла, на котором работает RPC-сервер), аргументы interface_ name и interface_version задают номер и версию интерфейса, а аргумент protocol указывает на один из двух транспортных протоколов стека TCP/IP — TCP или UDP. Жесткая ориентация только на один стек коммуникационных протоколов, а именно стек TCP/IP, — еще одно ограничение Sun RPC. У компании Sun существует также протокольно-независимая версия системы удаленного вызова процедур — TI-RPC (Transport-Independent RPC), но она менее распространена.
Вызов clnt_create возвращает указатель, который необходимо далее использовать вместо адреса RPC-сервера при последовательных обращениях к удаленным процедурам, обслуживаемым данным сервером. В процессе своего
выполнения clnt_create создает сокет, который связывает с адресом сервера, включающим и неявно полученный от модуля отображения портов (службы portmapper) номер порта. В конце сеанса работы с сервером необходимо выполнить системный вызов clnt_destroy, который закрывает созданный сокет.
Еще одним ограничением Sun RPC является максимальный размер сообщения в 8 Кбайт при использовании протокола UDP (применение протокола TCP не накладывает таких ограничений в силу особенности его интерфейса с вышележащими протоколами, который позволяет передавать непрерывный поток байтов в течение периода существования ТСР-соединения).
DCE RPC
Служба DCE RPC обладает рядом функциональных преимуществ по сравнению с Sun RPC. Она поддерживает динамическое связывание клиентов и серверов, для чего используется справочная служба среды DCE — служба Cell Directory Service (CDS). Каждый RPC-сервер при старте регистрирует свой сетевой адрес и уникальный идентификатор интерфейса на CDS-сервере. Кроме того, на каждом узле, поддерживающем RPC, работает процесс rpcd, который выполняет функции по отображению RPC-сервера на подходящий локальный адрес процесса (например, порт TCP/UDP, если сервер работает на компьютере, поддерживающем стек TCP/IP). Служба DCE RPC является транспортно-независимой, что позволяет ей работать на разных платформах и в различных сетях.
При описании интерфейса используется язык IDL. Процедуры DCE RPC могут иметь произвольное число аргументов, которые описываются как входные, выходные или входные/выходные.
Выводы
Распределенные приложения обладают рядом потенциальных преимуществ по сравнению с локальными, такими как более высокая производительность, отказоустойчивость, масштабируемость.
Основными схемами разделения приложений на функциональные части являются двухзвенная и трехзвенная модели, в которых вычислительная нагрузка распределяется между двумя или тремя компьютерами соответственно.
Единственным по-настоящему важным отличием распределенных систем от централизованных является используемый ими способ взаимодействия между процессами. В централизованных системах связь между процессами, как правило, предполагает наличие разделяемой памяти. В распределенных системах взаимодействие процессов может осуществляться только путем передачи сообщений через сеть.
Сообщение — это блок информации, отформатированный процессом-отправителем таким образом, чтобы он был понятен процессу-получателю. Сообщение состоит из заголовка, обычно фиксированной длины, и набора данных определенного типа переменной длины.
Все сетевые службы, предоставляющие пользователям сети разнообразные услуги (доступ к удаленным файлам, принтерам, почтовым ящикам и т. п.), работают на основе двух основных коммуникационных примитивов — send (отправить) и receive (получить).
Основными характеристиками коммуникационных примитивов являются:
способ адресации;
наличие синхронизации;
О способ буферизации;
степень надежности доставки.
Механизм сокетов предоставляет удобный и универсальный интерфейс обмена сообщениями, предназначенный для разработки сетевых распределенных приложений. Сокет — это абстрактная конечная точка, через которую сообщения уходят в сеть или принимаются из сети. Сетевое соединение между двумя процессами осуществляется через пару сокетов, каждый процесс пользуется собственным сокетом.
Еще одним удобным механизмом, облегчающим взаимодействие операционных систем и приложений по сети, является механизм вызова удаленных процедур (RPC). Идея, положенная в основу RPC, состоит в том, чтобы вызов удаленной процедуры по возможности выглядел так же, как и вызов локальной.
