- •Уважаемый студент!
- •Образовательный маршрут по дисциплине
- •Тематический план и содержание профессионального модуля «Картографо-геодезическое сопровождение земельно-имущественных отношений»
- •Контрольно-измерительные материалы оценки знаний студентов Вопросы к экзамену/зачету
- •Тестовые задания
- •Вариант 2
- •Вариант 3
- •Вариант 4
- •Вариант 5
- •Горизонтальный угол измерен теодолитом т 30 способом приемов. Определить угол и средний угол по данным журнала измерения углов.
- •Информационное обеспечение дисциплины Основные источники:
- •Лекционная часть
- •Тема 1. Основные понятия о геодезии
- •1.1. Предмет геодезии и её связь с другими науками
- •1.2. Краткий исторический очерк развития российской геодезии
- •1.3. Задачи инженерной геодезии
- •1.4. Понятие о форме и размерах Земли
- •1.4.1. Математическая поверхность Земли
- •1.4.2. Физическая поверхность Земли
- •1.5. Проектирование земной поверхности. Системы координат
- •1.5.1. Геодезические координаты
- •1.5.2. Астрономические координаты (для геодезии)
- •1.5.3. Географические координаты
- •1.5.4. Плоские прямоугольные геодезические координаты (зональные).
- •1.5.5. Полярные координаты
- •1.5.6. Системы высот
- •2.1. Понятие об ориентировании
- •2.2. Дирекционные углы и осевые румбы, истинные и магнитные азимуты, зависимость между ними
- •2.2.1. Дирекционные углы и осевые румбы
- •2.2.2. Истинные азимуты и румбы
- •2.2.3. Магнитные азимуты и румбы
- •2.3.2. Обратная геодезическая задача
- •2.4. Связь между дирекционными углами предыдущей и последующей линий
- •2.5. Вопросы для самоконтроля
- •3.1. Геодезическая съемка. План, карта, профиль
- •3.2. Рельеф. Основные формы рельефа
- •3.3. Изображение рельефа на планах и картах
- •3.4. Цифровые модели местности
- •3.5. Задачи, решаемые на планах и картах
- •3.5.1. Определение отметок точек местности по горизонталям
- •3.5.2. Определение крутизны ската
- •3.5.3. Построение линии с заданным уклоном
- •3.5.4. Построение профиля по топографической карте
- •3.6. Вопросы для самоконтроля
- •4.1. Принцип измерения горизонтального угла
- •4.2. Теодолит, его составные части
- •4.3. Классификация теодолитов
- •4.4. Основные узлы теодолита
- •4.4.1. Отсчетные приспособления
- •4.4.2. Уровни
- •4.4.3. Зрительные трубы и их установка
- •4.5. Предельное расстояние от теодолита до предмета
- •4.6. Вопросы для самоконтроля
- •Тема 1.2
- •5.1. Виды измерений линий
- •5.2. Приборы непосредственного измерения линий
- •5.3. Компарирование мерных лент и рулеток
- •5.4. Вешение линий
- •5.5. Порядок измерения линий штриховой лентой
- •5.6. Вычисление горизонтальной проекции наклонной линии местности
- •5.7. Косвенные измерения длин линий
- •5.8. Параллактический способ измерения расстояний
- •5.9. Вопросы для самоконтроля
- •6.1. Физико – оптические мерные приборы
- •6.2. Нитяный оптический дальномер
- •6.3. Определение горизонтальных проложений линий измеренных дальномером
- •6.4. Определение коэффициента дальномера
- •6.5. Принцип измерения расстояний электромагнитными дальномерами
- •6.6. Способы съемки ситуации
- •6.7. Вопросы для самоконтроля
- •7.1. Задачи и виды нивелирования
- •7. Стереофотограмметрическое нивелирование основано на определении превышения по паре фотоснимков одной и той же местности, полученных из двух точек базиса фотографирования.
- •7.2. Способы геометрического нивелирования
- •7.3. Классификация нивелиров
- •7.5. Влияние кривизны Земли и рефракции на результаты нивелирования
- •7.6. Вопросы для самоконтроля
- •Тема 1.4 Геодезические сети
- •8.1. Принцип организации съемочных работ
- •8.2. Назначение и виды государственных геодезических сетей
- •8.3. Плановые государственные геодезические сети. Методы их создания
- •8.4. Высотные государственные геодезические сети
- •8.5. Геодезические съемочные сети
- •8.6. Плановая привязка вершин теодолитного хода к пунктам ггс
- •8.7. Вопросы для самоконтроля
- •9.1. Тригонометрическое нивелирование
- •9.2. Определение превышения тригонометрическим нивелированием с учетом поправки за кривизну Земли и рефракции
- •9.3. Тахеометрическая съемка, её назначение и приборы
- •9.4. Производство тахеометрической съемки
- •9.5. Электронные тахеометры
- •9.6. Вопросы для самоконтроля
- •10.1. Общие понятия об измерениях
- •10.2. Ошибки измерений
- •10.3. Свойства случайных ошибок измерений
- •10.4. Оценка точности результатов измерений
- •10.5. Средняя квадратическая ошибка функции общего вида
- •10.6. Математическая обработка результатов равноточных измерений
- •10.7. Неравноточные измерения. Понятие о весе измерения. Формула общей арифметической средины или весового среднего
- •10.8. Вопросы для самоконтроля
- •Тема 1.5.Картографо- геодезические работы
- •1. Строительная сетка
- •2. Содержание и основные этапы выполнения геодезических разбивочных работ
- •3. Подготовка данных для разбивочных работ
- •4. Основные элементы плановых разбивочных работ
- •4.1. Построение линий заданной длины
- •4.2. Построение горизонтального угла проектной величины
- •4.3. Построение линии проектной длины в заданном направлении
- •4.4. Построение заданного направления вне пункта разбивочной сети
- •5. Вынос в натуру планового положения
- •5.1. Способ прямоугольных координат
- •5.2. Способ прямой угловой засечки
- •5.3. Способ полярных координат
- •5.4. Способ линейной засечки
- •5.5. Способ проектного полигона
- •6. Основные элементы высотных разбивочных работ
- •6.1. Вынос точек с проектными отметками
- •6.2. Вынос на местность линий с проектными уклонами
- •6.3. Вынос в натуру плоскостей с заданными уклонами
- •7. Детальные разбивочные работы по выносу осей и отметок
- •7.1. Разбивка и закрепление осей сооружения на обноске
- •7.2. Разбивочные работы на исходном монтажном горизонте
- •7.3. Передача осей на монтажные горизонты
- •7.4. Передача отметок на монтажные горизонты
- •8. Особенности разбивочных работ при строительстве линейных и шахтных сооружений
- •8.1. Разбивочные работы при строительстве линейных сооружений
- •8.2. Разбивочные работы при шахтном строительстве
- •9. Пример подготовки исходных данных для выноса на местность участка канала
- •10. Пример вертикальной планировки для проектирования горизонтальной строительной площадки
- •Раздел 2. Картография c основами картографического черчения
- •Тема 2.1.Топографические карты и планы
- •1. Понятие о плане, карте, профиле. Масштабы карт и планов. Система обозначения карт и планов. А). Понятие о плане, карте, профиле.
- •Б). Масштабы карт и планов
- •В). Номенклатура карт и планов
- •2. Условные знаки карт и планов.
- •3. Рельеф местности и изображение его на картах и планах
- •4. Задачи, решаемые на картах и планах
- •А). Измерение на карте углов ориентирования
- •Б) Решение обратной геодезической задачи
- •В). Измерение площадей по карте
- •Вопросы для контроля
- •Тема 2.2. Условные знаки и условные обозначения
- •Тема 2.3. Элементы картографического черчения
- •Тема 2.4 Графическое оформление материалов
- •1. Аэрофотосъемка. Ее основные характеристики
- •Далее проводится оценка фотографического и фотограмметрического качества аэрофотосъемки:
- •2. Плановая привязка
- •3. Технология изготовления цифровых ортофотопланов
- •4. Дешифрирование
- •5. Использование фотопланов в кадастровых работах
- •Градостроительный кодекс рф от 29.12.2004 n 190-фз
- •Глава 5. Планировка территории
- •3. Существенными условиями договора являются:
- •Глоссарий
6. Основные элементы высотных разбивочных работ
6.1. Вынос точек с проектными отметками
Для выноса точек с проектными отметками используют методы геометрического, тригонометрического и гидростатического нивелирования. Метод геометрического нивелирования, обладающий высокой точностью и простотой реализации, имеет наибольшее распространение при строительстве. Метод тригонометрического нивелирования характеризуется меньшей точностью, однако этим методом можно значительно быстрее передавать отметки на монтажные горизонты. Гидростатическое нивелирование в строительстве используется обычно при выносе отметок под монтаж оборудования, когда превышения малы и предъявляются высокие требования к точности высотной разбивки.
Построение точек с проектными отметками методом геометрического нивелирования производят двумя способами: выведением и редуцированием.
Пусть требуется вынести на местность точку В с проектной отметкой НВ (рис. 6.1). Для выполнения этой задачи способом выведения посередине между точкой В и репером А с отметкой НA устанавливают нивелир. Производят отсчет а по рейке на репере и находят горизонт инструмента НГВ = HА + а. Вычисляют отсчет b по рейке на точке В, при котором пятка рейки будет на проектном уровне b = HГВ – HB. Затем рейку устанавливают в точке В так, чтобы отсчет по ней был равен вычисленному значению b. На коле, забитом предварительно в точке B, под пяткой рейки карандашом фиксируют высотное положение искомой точки.
Рис. 6.1. Построение превышения методом геометрического нивелирования
При
монтаже конструктивных элементов и
установке оборудования применяют способ
редуцирования. В этом случае нивелированием
из середины находят фактическое
превышение точки В
над
репером
и сравнивают его с проектным превышением
.
В точке B
укладывают
подкладку толщиной
,
верх подкладки будет на заданной
проектной отметке.
Погрешность построения точек с проектными отметками методом геометрического нивелирования зависит от дальности визирования, точности нивелира и делений рейки, способа отсчитывания и других факторов. Экспериментальными исследованиями установлено, что погрешность измерения превышения составляет, мм:
=
0,02 + 0,002s
– для прецизионного нивелира типа Н-05;
= 0,1 + 0,01s – для точного нивелира типа Ni-B3;
= 0,8 + 0,02s – для точного нивелира типа Н-3.
Расстояние s от нивелира до рейки в формулы подставляется в метрах. Оптимальная длина визирного луча составляет 25 м.
Точность способа выведения существенно зависит от способа фиксации высоты разбиваемой точки: при забивании колышка до проектного уровня погрешность фиксации равна 2–4 мм, при прочерчивании по метке (пятке) рейки – 1 мм, при вывинчивании болта с резьбой – 0,1–0,5 мм.
При тригонометрическом нивелировании превышения вычисляют по измеренному расстоянию и углу наклона:
,
где
s
и d
– наклонное расстояние и соответствующее
ему горизонтальное приложение;
– угол наклона; I,
– высота
прибора и визирной цели; f
– суммарная поправка за кривизну Земли
и рефракцию.
Наклонные расстояния обычно измеряют светодальномером, а горизонтальные проложения получают из измерений мерными приборами. Угол наклона измеряют со средней квадратической погрешностью 2–3 (теодолитом типа Т2) и 5" (теодолитом типа Т5К).
При использовании метода тригонометрического нивелирования необходимо с высокой точностью знать высоту теодолита I над пунктом разбивочной сети. Высота прибора может непосредственно измеряться с использованием рулетки или определяться косвенным путем с помощью нивелира и рейки.
В косвенном способе на расстоянии 2–3 м от пункта А разбивочной сети (рис. 6.2), на котором будет установлен теодолит, забивают кол или выбирают стабильную точку K. При помощи нивелира и рейки измеряют превышение h между пунктом А и точкой K. Затем над пунктом А устанавливают теодолит, приводят трубу в горизонтальное положение (отсчет по вертикальному кругу равен месту нуля) и делают отсчет b по рейке, установленной на точке K. Тогда высоту I теодолита можно получить из выражения
.
Рис. 6.2. Косвенный способ определения высоты теодолита
Погрешность определения высоты косвенным способом составляет 0,3–0,5 мм.
Гидростатическое
нивелирование обеспечивает построение
превышений с погрешностью 0,01–0,05 мм (с
помощью прецизионного нивелира) и 1–2
мм (с помощью технического нивелира). В
первом случае диапазон измеряемых
превышений составляет всего
25
мм.
В процессе гидростатического нивелирования следует избегать размещения приборов и шланга вблизи источников тепла и вентиляционных каналов, прямого попадания солнечных лучей, а также следует располагать шланги на уровне измерительных головок.
