Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
УМК ПМ. 03 Картографо-геодезическое сопровождение.DOC
Скачиваний:
1
Добавлен:
01.07.2025
Размер:
11.88 Mб
Скачать

10.3. Свойства случайных ошибок измерений

Теория ошибок изучает только случайные ошибки. Под случайной ошибкой здесь и далее будем понимать разность

Δi =  Х – i

где Δ– истинная случайная ошибка; Х – истинная величина; i – измеренная величина.

Случайные ошибки имеют следующие свойства:

1. Чем меньше по абсолютной величине случайная ошибка, тем она чаще встречается при измерениях.

2. Одинаковые по абсолютной величине случайные ошибки одинаково часто встречаются при измерениях.

3. При данных условиях измерений величина случайной погрешности по абсолютной величине не превосходит некоторого предела. Под данными условиями подразумевается один и тот же прибор, один и тот же наблюдатель, одни и те же параметры внешней среды. Такие измерения называют равноточными.

4. Среднее арифметическое из случайных ошибок стремится к нулю при неограниченном возрастании числа измерений.

Три первых свойства случайных ошибок достаточно очевидны. Четвертое свойство вытекает из второго.

Если Δ123,...,Δn - случайные ошибки отдельных измерений, где n – число измерений, то четвертое свойство случайных ошибок математически выражается

Предел этого отношения будет равен нулю, потому что в числителе сумма случайных ошибок будет конечной величиной, так как положительные и отрицательные случайные ошибки при сложении будут компенсироваться.

Чтобы запись была компактной, Гаусс предложил сумму записывать символом

  ,

тогда

10.4. Оценка точности результатов измерений

Под точностью измерений понимается степень близости результата измерения к истинному значению измеряемой величины. Точность результата измерений зависит от условий измерений.

Для равноточных результатов измерений мерой точности является средняя квадратическая ошибка m, определяемая по формуле Гаусса:

 .

Средняя квадратическая ошибка обладает устойчивостью при небольшом числе измерений.

Предельная ошибка.

Вследствие третьего свойства случайные ошибки, превышающие по абсолютной величине значение 2m, встречаются редко (5 на 100 измерений). Еще реже погрешности больше 3m(3 из 1000 измерений). Поэтому утроенную погрешность называют предельной ошибкой

Для особо точных измерений в качестве предельной ошибки принимают

Все вышеперечисленные ошибки называют абсолютными. В геодезии в качестве специальных характеристик точности измерений используется относительная ошибка – отношение абсолютной ошибки к среднему значению измеряемой величины, которое выражается в виде простой дроби с единицей в числителе, например

10.5. Средняя квадратическая ошибка функции общего вида

В большинстве случаев геодезические измерения выполняют с целью определения значения других величин, связанных с измеряемой функциональной зависимостью.

Например:

D = К · n ;

h = З – П ;

h = S · tgν.

Для суждения о получаемой при этом точности необходимо определить среднюю квадратическую ошибку функции по средним квадратическим ошибкам исходных величин, которые в свою очередь, могут являться результатами измерений или функциями результатов измерений.

Пусть  u = f(X,Y,Z) есть некоторая функция независимых величин X, Y, Z, измеренных или вычисленных со средними квадратическими ошибками mx, my, mz.

Продифференцируем функцию по всем переменным и получим

.

В этой формуле бесконечно малые приращения – дифференциалы – заменим истинными ошибками. Получим выражение

,

где ΔX, ΔY, ΔZ – истинные ошибки.

Перейдем от истинных ошибок к средним квадратическим ошибкам. Для этого положим, что X, Y, Z измерено n раз, где можно считать   . Соответственно числу измерений составляем n равенств

 

Возведем каждое из равенств в квадрат, сложим и разделим на n

А так как             и т.д.,

то

 где     представляют собой частные производные данной функции, вычисленные для соответствующих значений аргументов.