Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Вариант 15.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
1.15 Mб
Скачать

Задание №19. Числа и их свойства.

1. Най­ди­те пя­ти­знач­ное число, крат­ное 15, про­из­ве­де­ние цифр ко­то­ро­го равно 60. В от­ве­те ука­жи­те какое-ни­будь одно такое число.

2. Цифры четырёхзнач­но­го числа, крат­но­го 5, за­пи­са­ли в об­рат­ном по­ряд­ке и по­лу­чи­ли вто­рое четырёхзнач­ное число. Затем из пер­во­го числа вычли вто­рое и по­лу­чи­ли 3627. При­ве­ди­те ровно один при­мер та­ко­го числа.

3. Цифры четырёхзнач­но­го числа, крат­но­го 5, за­пи­са­ли в об­рат­ном по­ряд­ке и по­лу­чи­ли вто­рое четырёхзнач­ное число. Затем из пер­во­го числа вычли вто­рое и по­лу­чи­ли 4536. При­ве­ди­те ровно один при­мер та­ко­го числа.

4. Вы­черк­ни­те в числе 123456 три цифры так, чтобы по­лу­чив­ше­е­ся трёхзнач­ное число де­ли­лось на 27. В от­ве­те ука­жи­те по­лу­чив­ше­е­ся число.

5. Най­ди­те трёхзнач­ное число, сумма цифр ко­то­ро­го равна 25, если из­вест­но, что его квад­рат де­лит­ся на 16.

6. Най­ди­те четырёхзнач­ное число, крат­ное 75, все цифры ко­то­ро­го раз­лич­ны и нечётны. В от­ве­те ука­жи­те какое-ни­будь одно такое число.

7. Най­ди­те наи­мень­шее трёхзнач­ное число, ко­то­рое при де­ле­нии на 2 даёт оста­ток 1, при де­ле­нии на 3 даёт оста­ток 2, при де­ле­нии на 5 даёт оста­ток 3 и ко­то­рое за­пи­са­но тремя раз­лич­ны­ми нечётными циф­ра­ми.

8. При­ве­ди­те при­мер четырёхзнач­но­го на­ту­раль­но­го числа, крат­но­го 4, сумма цифр ко­то­ро­го равна их про­из­ве­де­нию. В от­ве­те ука­жи­те ровно одно такое число.

9. При­ве­ди­те при­мер четырёхзнач­но­го числа А, об­ла­да­ю­ще­го сле­ду­ю­щи­ми свой­ства­ми:

1) сумма цифр числа А де­лит­ся на 8;

2) сумма цифр числа (А + 2) также де­лит­ся на 8;

3) число А мень­ше 3000.

В от­ве­те ука­жи­те ровно одно такое число.

10. При­ве­ди­те при­мер трёхзнач­но­го на­ту­раль­но­го числа, боль­ше­го 500, ко­то­рое при де­ле­нии на 8 и на 5 даёт рав­ные не­ну­ле­вые остат­ки и пер­вая слева цифра ко­то­ро­го яв­ля­ет­ся сред­ним ариф­ме­ти­че­ским двух дру­гих цифр. В от­ве­те ука­жи­те ровно одно такое число.

Задание №19. Задачи на смекалку.

1. Саша при­гла­сил Петю в гости, ска­зав, что живёт в седь­мом подъ­ез­де в квар­ти­ре № 462, а этаж ска­зать забыл. По­дой­дя к дому, Петя об­на­ру­жил, что дом се­ми­этаж­ный. На каком этаже живёт Саша? (На каж­дом этаже число квар­тир оди­на­ко­во, но­ме­ра квар­тир в доме на­чи­на­ют­ся с еди­ни­цы.)

2. Саша при­гла­сил Петю в гости, ска­зав, что живёт в седь­мом подъ­ез­де в квар­ти­ре № 462, а этаж ска­зать забыл. По­дой­дя к дому, Петя об­на­ру­жил, что дом се­ми­этаж­ный. На каком этаже живёт Саша? (На всех эта­жах число квар­тир оди­на­ко­во, но­ме­ра квар­тир в доме на­чи­на­ют­ся с еди­ни­цы.)

3. Тре­нер по­со­ве­то­вал Ан­дрею в пер­вый день за­ня­тий про­ве­сти на бе­го­вой до­рож­ке 22 ми­ну­ты, а на каж­дом сле­ду­ю­щем за­ня­тии уве­ли­чи­вать время, про­ведённое на бе­го­вой до­рож­ке, на 4 ми­ну­ты, пока оно не до­стиг­нет 60 минут, а даль­ше про­дол­жать тре­ни­ро­вать­ся по 60 минут каж­дый день. За сколь­ко за­ня­тий, на­чи­ная с пер­во­го, Ан­дрей про­ведёт на бе­го­вой до­рож­ке в сумме 4 часа 48 минут?

4. По эм­пи­ри­че­ско­му за­ко­ну Мура сред­нее число тран­зи­сто­ров на мик­ро­схе­мах каж­дый год удва­и­ва­ет­ся. Из­вест­но, что в 2005 году сред­нее число тран­зи­сто­ров на мик­ро­схе­ме рав­ня­лось 520 млн. Опре­де­ли­те, сколь­ко в сред­нем мил­ли­о­нов тран­зи­сто­ров было на мик­ро­схе­ме в 2003 году.

5. В кор­зи­не лежит 50 гри­бов: ры­жи­ки и груз­ди. Из­вест­но, что среди любых 28 гри­бов име­ет­ся хотя бы один рыжик, а среди любых 24 гри­бов хотя бы один груздь. Сколь­ко груз­дей в кор­зи­не?

6. Врач про­пи­сал па­ци­ен­ту при­ни­мать ле­кар­ство по такой схеме: в пер­вый день он дол­жен при­нять 3 капли, а в каж­дый сле­ду­ю­щий день — на 3 капли боль­ше, чем в преды­ду­щий. При­няв 30 ка­пель, он ещё 3 дня пьёт по 30 ка­пель ле­кар­ства, а потом еже­днев­но умень­ша­ет приём на 3 капли. Сколь­ко пу­зырь­ков ле­кар­ства нужно ку­пить па­ци­ен­ту на весь курс приёма, если в каж­дом со­дер­жит­ся 20 мл ле­кар­ства (что со­став­ля­ет 250 ка­пель)?

7. Саша при­гла­сил Петю в гости, ска­зав, что живёт в де­ся­том подъ­ез­де в квар­ти­ре № 333, а этаж ска­зать забыл. По­дой­дя к дому, Петя об­на­ру­жил, что дом де­вя­ти­этаж­ный. На каком этаже живёт Саша? (На каж­дом этаже число квар­тир оди­на­ко­во, но­ме­ра квар­тир в доме на­чи­на­ют­ся с еди­ни­цы.)

8. Каж­дую се­кун­ду бак­те­рия де­лит­ся на две новые бак­те­рии. Из­вест­но, что весь объём од­но­го ста­ка­на бак­те­рии за­пол­ня­ют за 1 час. За сколь­ко се­кунд бак­те­рии за­пол­ня­ют по­ло­ви­ну ста­ка­на?

9. В кор­зи­не лежат 40 гри­бов: ры­жи­ки и груз­ди. Из­вест­но, что среди любых 17 гри­бов име­ет­ся хотя бы один рыжик, а среди любых 25 гри­бов хотя бы один груздь. Сколь­ко ры­жи­ков в кор­зи­не?

10. Какое наи­мень­шее число иду­щих под­ряд чисел нужно взять, чтобы их про­из­ве­де­ние де­ли­лось на 7?

31