- •Задание №1. Числовые выражения
- •Задание №2. Выражения со степенями
- •Задание №3. Простейшие текстовые задачи
- •Задание №4. Преобразование выражений (действия с формулами)
- •Задание №5. Вычисления и преобразования выражений.
- •Задание №6. Простейшие текстовые задачи.
- •Задание №7. Простейшие уравнения.
- •Задание №8. Прикладная геометрия.
- •Задание №9. Размеры и единицы измерения.
- •Задание №10. Начало теории вероятностей.
- •Задание №11. Чтение графиков и диаграмм.
- •Задание №12. Выбор оптимального варианта.
- •Задание №13. Стереометрия.
- •Задание №14. Анализ графиков и диаграмм.
- •Задание №15. Задачи по планиметрии.
- •Задание №16. Задачи по стереометрии.
- •Задание №17. Неравенства.
- •Задание №18. Анализ утверждений.
- •Задание №19. Числа и их свойства.
- •Задание №19. Задачи на смекалку.
Задание №19. Числа и их свойства.
1. Найдите пятизначное число, кратное 15, произведение цифр которого равно 60. В ответе укажите какое-нибудь одно такое число.
2. Цифры четырёхзначного числа, кратного 5, записали в обратном порядке и получили второе четырёхзначное число. Затем из первого числа вычли второе и получили 3627. Приведите ровно один пример такого числа.
3. Цифры четырёхзначного числа, кратного 5, записали в обратном порядке и получили второе четырёхзначное число. Затем из первого числа вычли второе и получили 4536. Приведите ровно один пример такого числа.
4. Вычеркните в числе 123456 три цифры так, чтобы получившееся трёхзначное число делилось на 27. В ответе укажите получившееся число.
5. Найдите трёхзначное число, сумма цифр которого равна 25, если известно, что его квадрат делится на 16.
6. Найдите четырёхзначное число, кратное 75, все цифры которого различны и нечётны. В ответе укажите какое-нибудь одно такое число.
7. Найдите наименьшее трёхзначное число, которое при делении на 2 даёт остаток 1, при делении на 3 даёт остаток 2, при делении на 5 даёт остаток 3 и которое записано тремя различными нечётными цифрами.
8. Приведите пример четырёхзначного натурального числа, кратного 4, сумма цифр которого равна их произведению. В ответе укажите ровно одно такое число.
9. Приведите пример четырёхзначного числа А, обладающего следующими свойствами:
1) сумма цифр числа А делится на 8;
2) сумма цифр числа (А + 2) также делится на 8;
3) число А меньше 3000.
В ответе укажите ровно одно такое число.
10. Приведите пример трёхзначного натурального числа, большего 500, которое при делении на 8 и на 5 даёт равные ненулевые остатки и первая слева цифра которого является средним арифметическим двух других цифр. В ответе укажите ровно одно такое число.
Задание №19. Задачи на смекалку.
1. Саша пригласил Петю в гости, сказав, что живёт в седьмом подъезде в квартире № 462, а этаж сказать забыл. Подойдя к дому, Петя обнаружил, что дом семиэтажный. На каком этаже живёт Саша? (На каждом этаже число квартир одинаково, номера квартир в доме начинаются с единицы.)
2. Саша пригласил Петю в гости, сказав, что живёт в седьмом подъезде в квартире № 462, а этаж сказать забыл. Подойдя к дому, Петя обнаружил, что дом семиэтажный. На каком этаже живёт Саша? (На всех этажах число квартир одинаково, номера квартир в доме начинаются с единицы.)
3. Тренер посоветовал Андрею в первый день занятий провести на беговой дорожке 22 минуты, а на каждом следующем занятии увеличивать время, проведённое на беговой дорожке, на 4 минуты, пока оно не достигнет 60 минут, а дальше продолжать тренироваться по 60 минут каждый день. За сколько занятий, начиная с первого, Андрей проведёт на беговой дорожке в сумме 4 часа 48 минут?
4. По эмпирическому закону Мура среднее число транзисторов на микросхемах каждый год удваивается. Известно, что в 2005 году среднее число транзисторов на микросхеме равнялось 520 млн. Определите, сколько в среднем миллионов транзисторов было на микросхеме в 2003 году.
5. В корзине лежит 50 грибов: рыжики и грузди. Известно, что среди любых 28 грибов имеется хотя бы один рыжик, а среди любых 24 грибов хотя бы один груздь. Сколько груздей в корзине?
6. Врач прописал пациенту принимать лекарство по такой схеме: в первый день он должен принять 3 капли, а в каждый следующий день — на 3 капли больше, чем в предыдущий. Приняв 30 капель, он ещё 3 дня пьёт по 30 капель лекарства, а потом ежедневно уменьшает приём на 3 капли. Сколько пузырьков лекарства нужно купить пациенту на весь курс приёма, если в каждом содержится 20 мл лекарства (что составляет 250 капель)?
7. Саша пригласил Петю в гости, сказав, что живёт в десятом подъезде в квартире № 333, а этаж сказать забыл. Подойдя к дому, Петя обнаружил, что дом девятиэтажный. На каком этаже живёт Саша? (На каждом этаже число квартир одинаково, номера квартир в доме начинаются с единицы.)
8. Каждую секунду бактерия делится на две новые бактерии. Известно, что весь объём одного стакана бактерии заполняют за 1 час. За сколько секунд бактерии заполняют половину стакана?
9. В корзине лежат 40 грибов: рыжики и грузди. Известно, что среди любых 17 грибов имеется хотя бы один рыжик, а среди любых 25 грибов хотя бы один груздь. Сколько рыжиков в корзине?
10. Какое наименьшее число идущих подряд чисел нужно взять, чтобы их произведение делилось на 7?
