Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекция 5 - Мех_Колебания.doc
Скачиваний:
1
Добавлен:
01.07.2025
Размер:
567.81 Кб
Скачать
    1. Кинетическая, потенциальная и полная энергии гармонических колебаний

Полная энергия Е колеблющейся материальной точки равна сумме кинетической Ек и потенциальной Еп энергий

Е = Ек + Еп (5.10)

Кинетическую энергию можно найти, зная массу m и скорость

(5.11)

учитывая, что

получаем

(5.12)

Выражение для потенциальной энергии можно найти из соотношений между потенциальной энергией и силой.

или

(5.13)

Отсюда

(5.14)

Учитывая, что и получаем

(5.15)

Полную энергию получим сложив (5.12) и (5.15)

(5.16)

Таким образом, полная энергия пропорциональна квадрату амплитуды колебаний.

Из формул (5.12) и (5.15) видно, что когда увеличивается Еп уменьшается и наоборот.

5.3. Уравнение гармонических колебаний. Маятники

На колеблющуюся материальную точку массой m действует возвращающая сила F = - kx. Эта сила вызывает ускорение . Равенство этих сил позволяет записать

ma = -kx (5.17)

где, k – жесткость системы, ; х – смещение; а – ускорение материальной точки.

Сделав соответствующие подстановки в (5.17), получим

или (5.18)

Уравнение (5.18) представляет собой дифференциальное уравнение второго порядка незатухающих гармонических колебаний материальной точки.

Решением этого дифференциального уравнения как раз и является уравнение (5.2): .

Колебания любого гармонического осциллятора (или гармонического вибратора) описываются дифференциальным уравнением второго порядка

(5.19)

Решением этого уравнения является

(5.20)

где S0 – амплитудное (максимальное) значение параметра S.

Примерами гармонических осцилляторов являются маятники, колебательный контур.

В качестве примера малых колебаний рассмотрим колебания маятников.

Пружинный маятник

Груз массой m, подвешенный на упругой пружине представляет собой пружинный маятник (рис.5.4). Если груз оттянуть вниз и отпустить, то под действием силы F = -kx маятник будет совершать колебания; k – коэффициент жесткости (в данном случае коэффициент упругости).

Рис.5.4.

Уравнение движения маятника имеет вид

или ,

Его решением является

Это значит, что пружинный маятник совершает гармонические колебания с циклической частотой ω0

, с другой стороны .

Период колебаний пружинного маятника

(5.21).

Физический маятник

Физическим маятником называется твердое тело, которое может колебаться под действием силы тяжести вокруг оси, не проходящей через центр масс. При отклонении маятника относительно оси О угол α, на него действует М – момент возвращающей силы (рис.5.5)

(5.22)

где, I – момент инерции относительно оси О;

l – плечо силы Fτ; при малых углах .

Рис.5.5.

Из (5.22) получаем дифференциальное уравнение

Или

(5.23)

Сравнив уравнение (5.23) с уравнением гармонического осциллятора (5.19), получим

, (5.24)

где, – приведенная длина физического маятника.

От точки подвеса О на линии ОС на расстоянии L находится точка О1, называемая центром качения. Точки О и О1 обладает свойством взаимозаменяемости.