- •Содержание
- •Введение
- •1 Горение
- •1.1 Общие сведения о горении
- •1.2 Процесс горения
- •1.3 Расход воздуха при горении
- •1.4 Температура горения
- •1.5 Диффузионное пламя
- •1.6 Тепловая теория горения
- •1.7 Цепная теория горения
- •1.8 Горение газовых смесей
- •1.9 Горение жидкостей
- •1.10 Горение твердых веществ
- •1.10.1 Горение металлов
- •Твёрдого тела при экзотермическом гетерогенном процессе
- •1.10.2 Горение пластмасс
- •1.11 Контрольные вопросы
- •2 Пожароопасные свойства веществ и материалов
- •2.1 Горючие газы
- •2.2 Горючие жидкости
- •2.3 Твёрдые горючие вещества
- •2.4 Самовозгорание
- •2.4.1 Вещества, самовозгорающиеся под действием воздуха
- •2.4.1.1 Масла и жиры
- •2.4.1.2 Каменный уголь и торф
- •2.4.1.3 Растительные материалы
- •2.4.1.4 Неорганические вещества
- •2.4.2 Вещества, самовозгорающиеся под действием воды
- •2.4.3 Вещества, самовозгорающиеся под действием окислителей
- •2.5 Воспламеняемость аэрозолей
- •2.6 Определение температуры вспышки и воспламенения расчетным методом
- •2.6.1 Расчет температуры вспышки индивидуальных веществ в закрытом тигле
- •2.6.2. Расчет температуры вспышки смесей горючих жидкостей в закрытом тигле
- •2.6.3 Расчет температуры воспламенения
- •2.7 Контрольные вопросы
- •3 Способы и средства тушения пожаров
- •3.1 Контрольные вопросы
- •4 Взрыв
- •4.1 Физические взрывы и их характеристика
- •4.2 Взрывчатые вещества
- •4.3 Кислородный баланс
- •4.4 Чувствительность взрывчатых систем к внешним воздействиям
- •4.4.1 Чувствительность взрывчатых систем к тепловому воздействию
- •4.4.2 Чувствительность взрывчатых систем к механическим воздействиям
- •4.4.3 Чувствительность взрывчатых систем к электрическому импульсу и взрыву инициирующих взрывчатых веществ
- •4.5 Способы взрывания
- •4.5.1. Огневой способ взрывания
- •4.5.2 Электроогневой способ взрывания
- •4.5.3 Взрывание детонированным шнуром
- •4.5.4 Электрический способ взрывания
- •4.6 Средства взрывания
- •4.7 Расчёт скорости ударной волны
- •4.8 Контрольные вопросы
- •5 Детонация
- •5.1 Особенности распространения детонации в смесевых системах
- •5.2 Распространение детонации в конденсированных взрывчатых веществах
- •5.3 Передача детонации через различные среды
- •5.3.1 Бризантность взрывчатых веществ
- •5.4 Кумуляция
- •5.5 Контрольные вопросы
- •6 Моделирование пожаров и взрывов
- •6.1 Динамика опасных факторов пожара в протяженных помещениях
- •6.2 Моделирование пожаров на складах лесоматериалов
- •6.3 Моделирование взрывов
- •6.4 Контрольные вопросы
- •Фонд контрольных заданий
- •Список использованных источников
- •Основные термины и определения.
- •Хлорная известь (белильная известь) - сильный окислитель, применяется для дезинфекции, отбеливания тканей.
1.7 Цепная теория горения
Еще в 1928 г. Н.Н.Семенов выдвинул идею о возможности существования в химических системах двух типов взрывов – цепных и тепловых.
Цепными называются реакции, идущие через ряд стадий (через ряд промежуточных реакций), в которых образуются промежуточные соединения со свободными валентностями, так называемые активные центры, являющиеся зародышами последующих быстропротекающих стадий процесса.
Впервые представление о цепной реакции
появилось в 1913 г., когда немецкий
физико-химик М. Боденштейн установил,
что при освещении смеси водорода с
хлором молекула хлора, поглощая квант
световой энергии
,
распадается на атомы:
.
Атомы хлора мгновенно вступают в реакцию
с водородом, в результате чего происходит
взрыв смеси. Активация одной молекулы
хлора должна была бы вызвать образование
двух молекул
:
.
Однако, опыты показывают, что при этом образуется 100000 молекул хлористого водорода. Это можно объяснить, если предположить, что при взаимодействии хлора с водородом образуется продукт, который, вступая во вторичные реакции, вновь возрождается и может продолжать реакцию. Этому предположению соответствует такая схема реакции:
I
Первичная реакция
I
I
I
Развитие реакционной цепи
и т.д.
IV
Обрыв цепи
V
По этой схеме активация одной молекулы хлора (I) вызывает появление двух атомов хлора – двух активных центров цепной реакции. Каждый из атомов хлора дает начало своей цепной реакции, в которой активный центр непрерывно восстанавливается (II, III). Таким образом, под влиянием инициирующей реакции (I) возникают следующие друг за другом реакции, образующие цепь (II, III и т.д.). Число таких реакций от момента зарождения цепи до ее обрыва называют длиной цепи. Цепь может обрываться при столкновении атомов хлора (IV) или атомов водорода (V) и образования из них молекул, или при столкновении активных центров с поверхностью твердого вещества. Это типичная неразветвляющаяся цепная реакция. В ней каждый активный центр вызывает появление только одного нового активного центра, поэтому реакция может продолжаться, но не ускоряться.
В разветвляющейся цепной реакции каждый активный центр зарождает два и более новых активных центра.
Согласно теории цепных реакций, процесс окисления начинается с активизации горючего вещества.
Практика показала, что воспламенение может происходить в изотермических условиях, т.е. без повышения температуры реагирующей среды («холодное» воспламенение смеси). В этом случае говорят о цепном (изометрическом) взрыве.
Два исходных компонента: горючее и окислитель, находясь в относительно устойчивом молекулярном состоянии, прежде чем ассоциироваться в новые, более устойчивые молекулы продуктов горения, претерпевают целую цепь сложных промежуточных превращений, результатом которых является образование неустойчивых продуктов: атомов, радикалов, возбужденных молекул с относительно большой степенью ионизации (формальдегид, углеводородный и гидрокислый радикалы, атомарный кислород и водород).
Кондратьеву В.Н. удалось обнаружить в пламени различных углеводородов большие концентрации атомарного кислорода (О), гидрокислого радикала (ОН), углеводородных радикалов (СН3), окиси углерода (СО), формальдегида (СН2О) и др. Концентрации этих веществ в пламени оказались в тысячи и миллионы раз большими их равновесных концентраций при термическом разложении при температуре пламени конечных продуктов реакции, например, Н2О → Н+ОН.
Результаты этих наблюдений позволили сделать вывод, что рассматриваемые атомы и радикалы появляются в реагирующем газе не вследствие конечного распада продуктов, а являются промежуточными продуктами реакции.
Таким образом, в основе цепного механизма воспламенения лежит целая цепь химических превращений одних веществ в другие, результатом которых является образование на отдельных промежуточных стадиях химически очень активных неустойчивых продуктов, получивших название активных центров, которые легко реагируют между с собой и с молекулами исходных веществ с образованием новых активных центров и конечных продуктов, например, для метановоздушной смеси Н2О и СО2.
Высокая реакционная способность радикалов и атомов объясняется малой энергией активизации их реакций, близкой к энергии активации атомных реакций:
ОН + Н2 = Н2О + Н - 25 кДж/моль
СН3 + С3Н6 - 12,5 кДж/моль
СН3 + С6Н6 - 23,5 кДж/моль
Н2О → Н + ОН
Любая из полученных активных частиц (Н или ОН) будучи крайне неустойчивой и, следовательно, химически активной, сталкиваясь с молекулой исходного вещества, расщепляется, образуя новые активные частицы:
Н+О2 = ОН+О
ОН+Н2 = Н2О+Н
Полученные в результате реакции активные частицы Н и ОН снова вступят в реакции, а частицы О взаимодействуют с водородом:
О+Н2 = ОН+Н.
Т.е., в результате реакции между активными частицами и молекулами исходных веществ образуются не только конечные продукты, но и новые активные частицы. Образующиеся в результате реакции активные частицы дают начало новым стадиям химического превращения, которые будут происходить до полного расхода исходных веществ.
Такие многократно повторяющиеся химические реакции называются цепными, а активные частицы, дающие начало новым цепям превращений, активными центрами.
Рассмотренный выше цепной процесс горения водорода можно представить в виде схемы (рисунок 1.6).
Рисунок 1.6 - Схема цепного горения водорода
Из схемы видно, что начало новым цепям превращений дают только частицы водорода (Н), которые являются активными центрами. При этом в каждом звене цепного процесса в результате реакции между активным центром Н и молекулой кислорода О2 кроме конечного продукта Н2О образуются 3 новых активных центра Н, дающие начало новым цепям превращений.
Такая цепная реакция, протекающая с увеличением активных центров, называется разветвлённой. Реакция развивается лавинообразно и протекает с очень высокими скоростями, значительно превышающими скорость обычных молекулярных реакций.
Типичной реакцией с неразветвляющейся цепью является взаимодействие хлора с водородом. Активными центрами этой реакции служат чередующиеся атомы хлора и водорода. При реагировании атома хлора образуется один атом водорода так же, как при реагировании атома водорода образуется один атом хлора. Поэтому реакция может продолжаться, но не ускоряться.
Тот общеизвестный факт, что фотохимическая реакция хлора с водородом всё же оканчивается взрывом (самовоспламенением), объясняется тем, что при достаточно большой скорости цепной реакции тепловыделения превышают теплоотвод, в результате чего смесь сильно нагревается, и возникают условия, необходимые для теплового самовоспламенения.
При протекании разветвлённой цепной реакции, которая характерна для углеводородов, концентрация активных центров может возрастать независимо от условий начального инициирования и, если скорость образования активных центров при разветвлениях превосходит скорость обрыва цепи, то возникает самоускоряющийся процесс лавинообразного характера, приводящий к воспламенению.
Теория цепных реакций позволила объяснить многие особенности процессов горения (сильное влияние примесей, пределы самовоспламенения по давлению, катализ и ингибирование давления и др.), которые нельзя объяснить тепловой теорией. Механизм возникновения и развития реальных пожаров и взрывов характеризуется комбинированным цепочечно-тепловым процессом. Начавшись цепным путём, реакция окисления за счёт её экзотермичности продолжает ускоряться тепловым путём. Поэтому, в конечном счете, критические (предельные) условия возникновения и развития горения будут определяться тепловыделением и условиями теплообмена реагирующей системы с окружающей средой.
На цепных химических реакциях основаны многие технологические процессы в химической промышленности. К таким процессам относятся, например, процессы полимеризации, составляющие основу производства синтетических каучуков, пластмасс, полимерных волокон и многих других изделий. К ним также относятся такие важные промышленные процессы, как производство синтетических жирных кислот, заменяющих ранее применяемые пищевые жиры в производстве моющих смазочных средств, крекинг – процесс получения высококачественного топлива из нефти и т. д.
