Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ПОСОБИЕ 1 дис.doc
Скачиваний:
5
Добавлен:
01.07.2025
Размер:
3.06 Mб
Скачать

1.6 Тепловая теория горения

Первой хронологически (конец ХIХ века) была тепловая теория, основоположниками которой считаются Маляр, Ле Шателье и Нуссельт. В основу этой теории положена гипотеза Вант-Гофа о температурной зависимости скорости химической реакции. Условием теплового взрыва является преобладание теплоприхода за счет энергии реакции над отводом тепла в окружающую среду. В этом случае в системе накапливается тепло, что приводит к саморазогреву и соответственно к саморазгону реакции.

Возникновение в горючей системе реакции окисления связано чаще всего с нагреванием системы тем или иным источником воспламенения. При нагревании горючей системы энергия молекул горючего и кислорода увеличивается и, когда она достигает некоторой величины, происходит их активизация, т.е. образуются активные центры (радикалы и атомы), имеющие свободные валентности, в результате чего молекулы горючего вещества легко вступают в соединение с кислородом воздуха. А.Н. Бах и К. Энглер в 1898 г. независимо друг от друга предложили перекисную теорию окисления, согласно которой при нагревании горючей системы происходит активизация кислорода путём разрыва одной связи между атомами, причём активная молекула вступает в соединение с горючим веществом, не распадаясь на атомы и образуя перекисные соединения типа: R1-O-O-R2 или R-O-O-OH.

Однако, перекисная теория не в состоянии объяснить некоторые характерные особенности процесса окисления, например, резкое действие, иногда ничтожных следов посторонних примесей.

Скорость химической реакции , м/с может быть выражена, исходя из закона Аррениуса, следующим уравнением:

, (1.12)

где - константа скорости реакции (скорость химической реакции при концентрациях реагентов, приведенных к единице);

, , - концентрации реагентов, моль/м3;

, , - стехиометрические коэффициенты, определяемые соотношением концентраций исходных реагентов в стехиометрическом уравнении реакции;

- основание натуральных логарифмов;

- энергия активации, Дж/моль;

- универсальная газовая постоянная, = 8,3 Дж/(моль∙К);

– температура, К.

Тепловая теория самовоспламенения (называемая также теорией теплового взрыва) основана на сопоставлении скоростей процессов тепловыделения при экзотермическом окислении и теплоотвода от реагирующей смеси в стенке содержащего его сосуда. Условие самовоспламенения определяется равенством этих скоростей. Температура стенок сосуда, при которой достигается это равенство, называется температурой самовоспламенения. Начиная с этой температуры (характерной в каждом случае для данных конкретных условий - размера и формы сосуда, теплофизических свойств газа) происходит саморазогрев, который может привести к вспышке (самовоспламенению).

С учётом изложенного для саморазогрева в реагирующей среде можно записать:

, (1.13)

где - теплоемкость при постоянном объёме, Дж/К ;

- плотность газа, кг/м3;

- температура газа, К;

- время, с;

- тепловой эффект реакции, Вт;

- скорость реакции, м/с;

- поверхность реакционного сосуда, м2;

- объем реакционного сосуда, м3;

- коэффициент теплоотдачи, Вт/( м2К);

- температура стенки сосуда, К.

Д.А.Франк-Каменецким был предложен критерий теплового самовоспламенения, основанный на нарушении стационарного распределения температур в реактивном сосуде при достаточной скорости тепловыделения:

, (1.14)

где - характерный размер сосуда, м;

- предэкспоненциальный множитель;

- коэффициент теплопроводности газовой смеси, Вт/(мК);

- безразмерный критерий, равный 3,3; 0,88 и 2 соответственно для сферического, плоскопараллельного и цилиндрического сосудов.

Критерий Д.А.Франк-Каменецкого следует понимать так: если при подстановке всех параметров, определяющих , мы получим значение , то воспламенения не будет, при произойдет воспламенение. Из уравнения критерия следует, что теплота реакции и радиус сосуда , в котором происходит реакция, - важные определяющие факторы взрыва. Тепловой взрыв выражен тем ярче, чем лучше выполняются неравенства:

 1

Если эти неравенства выполняются плохо, то тепловой взрыв вырождается – одновременно с ростом температуры происходит быстрое выгорание исходного вещества, которое смазывает картину взрыва.

Возникновение горения чаще всего связано с нагреванием горючей системы тем или иным источником воспламенения. Согласно теории академика Н.Н. Семёнова, процесс окисления сопровождается выделением тепла и при определенных условиях может самоускоряться. Этот процесс самоускорения реакции окисления с переходом её в горение называется самовоспламенением.

В случае теплового самовоспламенения оно возникает вследствие превышения скорости тепловыделения над скоростью теплоотвода.

Рассмотрим процесс теплового самовоспламенения на примере горючего газа или паров горючей жидкости с воздухом, помещенных в сосуд объёмом . При повышении температуры сосуда и горючей смеси скорость реакции и выделение тепла увеличится. Зависимость скорости выделения тепла от температуры , Дж/с определяются:

, (1.15)

где - теплота сгорания газа, Дж;

- объём горючей смеси, м3;

- константа скорости реакции;

- концентрация реагирующего вещества, кг/м 3;

- порядок реакции;

- энергия активации, Дж/моль;

- универсальная газовая постоянная Дж/(моль·К);

- температура смеси, К.

Выделяющееся тепло передаётся горючей смеси, и она нагревается. Как только температура смеси превысит температуру стенок сосуда, начнётся отвод тепла через стенки сосуда в единицу времени, пропорционально разности температур смеси и стенок сосуда и определяются зависимостью:

, (1.16)

где - скорость отвода тепла через стенки сосуда, Дж/с;

- коэффициент теплопередачи, Дж/(К·м2 с);

- поверхность стенок сосуда, м2;

- температура смеси, К;

- температура стенок сосуда, К

Рисунок 1.5 – Зависимость тепловыделения от температуры при разных давлениях

На рисунке 1.5 кривые 2, 3 и 4 показывают зависимость тепловыделения от температуры при разных давлениях и одинаковом составе смеси. При постоянных температурах сосуда и среды и постоянном составе смеси количество отводимого из зоны горения тепла характеризуется прямой 1. При изменении состава смеси изменится и скорость теплопотерь и, следовательно, наклон прямой. Чем выше давление, тем больше выделяется тепла при реакции (кривая 4). В условиях, определяемых кривой 2, самовоспламенение возникнуть не может, так как теплопотери (прямая 1) выше тепловыделений при этом давлении. Точка касания кривой 3 с прямой соответствует равновесию между выделяемым и отводимым теплом при - минимальной температуре самовоспламенения данной горючей системы в заданных условиях. При незначительном подводе энергии извне возможно самовоспламенение. Кривая 4 характеризует условия, при которых неизбежно самовоспламенение, так как выделяется тепло больше, чем отводится.

Анализируя приведённую схему, Н.Н. Семёнов установил зависимость:

, (1.17)

где - минимальное давление воспламенения, Па;

- минимальная температура самовоспламенения, К;

- порядок реакции;

- постоянная, зависящая от состава и других свойств смеси.

На основании этого уравнения (1.17) можно теоретически заранее определить, возможно ли самовоспламенение горючей смеси в данных конкретных условиях. Соотношение, связывающее минимальное давление с температурой самовоспламенения, было подтверждено многочисленными экспериментами и оказалось ценным при изучении процессов горения.