Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ПОСОБИЕ 1 дис.doc
Скачиваний:
5
Добавлен:
01.07.2025
Размер:
3.06 Mб
Скачать

1.4 Температура горения

Выделяющееся в зоне горения тепло воспринимается продуктами сгорания, вследствие чего они нагреваются до высокой температуры. Та температура, до которой в процессе горения нагреваются продукты сгорания, на­зывается температурой горения. Различают калориметри­ческую, теоретическую и действительную температуры горения. Действительная температура горения для усло­вий пожара называется температурой пожара.

Под калориметрической температурой горения пони­мают ту температуру, до которой нагреваются продукты полного сгорания при следующих условиях:

1) все вы­деляющееся при горении тепло расходуется на нагре­вание продуктов сгорания (потери тепла равны нулю);

2) начальная температура воздуха и горючего вещества равна 0 °С;

3) количество воздуха равно теоретически необходимому ( = 1);

4) происходит полное сгорание.

Калориметрическая температура горения зависит толь­ко от состава горючего вещества и не зависит от его ко­личества.

Теоретическая температура, в отличие от калоримет­рической, характеризует горение с учетом эндотермиче­ского процесса диссоциации продуктов сгорания при высокой температуре:

2СОз → 2СО + О2 — 570,2 кДж

2О → 2Н2 + О2 — 478,2 кДж

Практически диссоциацию продуктов сгорания необ­ходимо учитывать только при температурах выше 1700 °С. При диффузионном горении веществ в услови­ях пожара действительные температуры горения не до­стигают таких значений, поэтому для оценки условий пожара используют только калориметрическую темпе­ратуру горения и температуру пожара. Различают тем­пературу внутреннего и наружного пожара.

Температура внутреннего пожара - это средняя тем­пература дыма в помещении, где происходит пожар. Температура наружного пожара - температура пла­мени.

В действительности не вся теплота, выделяющаяся при горении в условиях пожара, расходуется на нагрева­ние продуктов сгорания. Большая часть ее расходуется на нагревание конструкций, подготовку горючих веществ к горению, нагревание избыточного воздуха и др. В свя­зи с этим температура внутреннего пожара значительно ниже калориметрической. Так, через 10 мин после

раз­вития внутреннего пожара температура пожара состав­ляет примерно от 0,1 до 0,2 части калориметрической темпе­ратуры, через 20 мин от 0,2 до 0,3, через 30 мин от 0,3 до 0,35, через 40 мин от 0,35 до 0,4. Пользуясь этими данными, можно по калориметрической температуре находить температу­ру внутреннего пожара.

Рисунок 1.2 - Температурный режим пожара при горении различных веществ

На рисунке 1.2 показано изменение температуры внутрен­него пожара (температурный режим пожара) при горе­нии различных твердых материалов. Как показывает ход кривых, температура пожара при горении всех ве­ществ первоначально растет, достигая максимума, а за­тем по мере выгорания материала постепенно понижает­ся.

1.5 Диффузионное пламя

Пространство, где сгорают пары и газы, называется пламенем или факелом. Пламя может быть кинетиче­ским или диффузионным в зависимости от того, горит ли заранее подготовленная смесь паров или газов с воз­духом или такая смесь образуется непосредственно в пламени в процессе горения. В условиях пожара га­зы, жидкости и твердые вещества горят диффузионным пламенем.

Структура диффузионного пламени существенно за­висит от сечения потока горючих паров и газов и его скорости. По характеру потока различают ламинарное и турбулентное диффузионное пламя. Ламинарное пла­мя возникает при малых сечениях потока паров или га­зов, движущихся с небольшой скоростью (пламя свечи, спички, газа в горелке небольшого диаметра и т. д.). На пожарах при горении всех веществ образуется тур­булентное пламя. Оно меньше изучено, и для объяснения этого явления используют положения теории ламинарно­го пламени. На рисунке 1.3 показано строение ламинарного диффузионного пламени на примере пламени жидкости, горящей в сосуде небольшого диаметра. Пламя состоит из зоны горения и зоны паров, последняя занимает почти весь объем пламени.

Зона \горения

Воздух

Воздух

Рисунок 1.3 - Строение ламинарного диффузионного пламени

Подобное по строению пламя образуется также при горении газов и твердых веществ, если скорость движения газов и паров находится в ламинарном режиме. Зона горения в диффузионном пламени представляет очень тонкий слой, в котором протекает реакция горения. Превращение веществ и выделение тепла в этом слое вызывает возникновение молекулярной диффузии в прилегающих к нему слоях воздуха и горючего. Причиной молекулярной диффузии является разность парциальных давлений и температур газов, участвующих в горении.

Сажа

Рисунок 1.4 - Температура зон пламе­ни при горении керосина

Температура в зоне паров значительно ни­же, чем в зоне горения. Так, в пламени керосина (рисунок 1.4) температура потока паров около поверхности жидкости равна температуре ее кипения. По мере движения пото­ка к зоне горения температура паров (на рисунке 1.4 - точки на вертикальной линии) повышается сначала за счет излучения зоны горения, а затем диффузии из нее на­гретых продуктов сгорания. В результате нагрева про­исходит термическая диссоциация паров около зоны го­рения и образуются свободные атомы и радикалы совместно с продуктами горения.

Атомы углерода, поступая в зону горения, воз­буждаются и, будучи некоторое время в свободном со­стоянии, светятся. Если вместо углерода вводить в пламя частицы других твердых веществ, пламя приобретает иной, чем при горении углерода, цвет. Так, если в несветящее пламя метилового спирта ввести соль строн­ция, то пламя окрасится в красный цвет, при введении соли меди - в синий или зе­леный.

Температура зо­ны горения пламени ме­няется по его высоте. Объ­ясняется это изменением со­става стехиометрической смеси в зоне горения и за­тратой тепла на нагрев по­ступающего в нее воздуха. В нижней части пламени, хотя и образуется стехиометрическая смесь с наи­большей теплотой горения, однако, температура горе­ния не является здесь мак­симальной, так как значи­тельное количество тепла затрачивается на нагрев хо­лодного воздуха. В средней части пламени теплота горе­ния стехиометрической смеси меньше, чем в нижней, за счет диффузии в нее продуктов сгорания, однако, по­ступающий в зону горения нагретый воздух компенси­рует потери тепла, и температура горения в этой части пламени является максимальной. В верхней части диф­фузионного пламени стехиометрическая смесь имеет еще меньшую теплоту горения, и нагретый воздух, посту­пающий для ее образования, не может компенсировать всех потерь тепла, поэтому температура горения здесь минимальная. В связи с этим в верхней части пламени часто образуется сажа.

Турбулентное пламя отличается от ламинарного тем, что не имеет четких очертаний и постоянного положения фронта пламени. Температура его при горении нефтепродуктов составляет: бензина 1200 °С, керосина 1100 °С, нефти 1100 °С, мазута 1000 °С. При горении древесины в штабелях температура турбулентного пламени достигает от 1200 до 1300 °С.

Горение может осуществляться в двух режимах:

- самовоспламенения, заключающемся в самопроизвольном возникновении пламенного горения предварительно нагретой до некоторой критической температуры горючей смеси (называемой температурой самовоспламенения) и проявляющегося в одновременном (в виде вспышки) сгорании всей горючей смеси;

- режиме распространения волны горения (распространения фронта пламени) по холодной смеси при ее локальном зажигании (воспламенении) внешним источником.

Для получения представлений о распространении волны горения поместим гомогенную горючую смесь в стеклянную трубку, открытую с одного конца, и воспламеним ее внешним источником у открытого конца.

Распространяющееся вначале сферически, пламя при достижении стенок трубки преобразуется в плоский, узкий (толщиной менее 10-6 м) фронт, распространяющийся в сторону свежей смеси. Продукты сгорания, объем которых в результате повышения температуры в несколько раз превышает объем исходной смеси, истекает из трубки через открытый конец. Скорость перемещения фронта пламени по нормали к его поверхности называется нормальной скоростью распространения пламени. Нормальная скорость распространения пламени имеет минимально возможную величину, не зависит от условий, а зависит лишь от химического состава горючей смеси и соотношения горючего окислителя (максимальное значение нормальной скорости распространения пламени соответствует стехиометрическому соотношению компонентов горючей смеси). Этот показатель, строго говоря, является единственным из всех многочисленных характеристик пламени, имеющим характер физико-химической константы.

Если же закрыть свободный конец трубки, то горячие продукты сгорания будут, как поршень, давить на пламя и увеличивать скорость его перемещения. Суммарная скорость такого перемещения фронта пламени называется видимой скоростью пламени , м/с и определяется выражением:

, (1.9)

где - нормальная скорость распространения пламени, м/с;

- степень расширения продуктов сгорания.

Степень расширения продуктов сгорания , вычисляют по формуле:

, (1.10)

где , – температура горения и начальная температура, oС;

- отношение числа молей продуктов сгорания к числу молей исходной смеси (величина для углеводородных горючих веществ близка к единице).

В случае диффузионного горения, пламя как бы стоит на месте, а в него втекают с одной стороны горючие пары, с другой стороны – воздух. Наиболее характерным примером диффузионного пламени является горящая свеча.

Распространение пламени происходит путем переноса их фронта пламени в свежую горючую смесь потоков тепла молекулярной теплопроводностью и активных центров диффузий. Соотношение между этими потоками зависит от химической природы горючей смеси, развиваемой во фронте пламени температуры и условий распространения пламени. Для обычных горючих веществ и материалов (органических, т.е. на основе углеводородов и их производных), нижняя температурная граница пламени которых составляет около 1030 °С , максимальная температура горения может достигать 2230 °С, доминирующее значение приобретает перенос тепла.

Тепловая теория пламени, разработанная Я.Б.Зельдовичем, исходит из подобия полей концентраций и температур во фронте пламени.

Многочисленные опытные данные свидетельствуют, что скорость пламени углеводородо-воздушных смесей с давлением уменьшается по закону:

, (1.11)

где - давление, Па.

Анализируя это выражение, можно видеть, что порядок реакции при горении таких смесей имеет дробную величину. Это свидетельствует о сложном немолекулярном механизме химических превращений в пламени.