Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
лк 2_1.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
655.75 Кб
Скачать

§4. Способы перевода чисел из одной системы счисления в другую.

Перевод чисел из одной позиционной системы счисления в другую: перевод целых чисел.

Чтобы перевести целое число из одной системы счисления с основанием d1 в другую с основанием d2 необходимо последовательно делить это число и получаемые частные на основание d2 новой системы до тех пор, пока не получится частное меньше основания d2. Последнее частное – старшая цифра числа в новой системе счисления с основанием d2, а следующие за ней цифры  - это остатки от деления, записываемые в последовательности, обратной их получению. Арифметические действия выполнять в той системе счисления, в которой записано переводимое число.

Перевести число 11(10) в двоичную систему счисления. Ответ: 11(10)=1011(2). Пример 2. Перевести число 122(10) в восьмеричную систему счисления. Ответ: 122(10)=172(8). Пример 3. Перевести число 500(10) в шестнадцатеричную систему счисления. Ответ: 500(10)=1F4(16).

Перевод чисел из одной позиционной системы счисления в другую: перевод правильных дробей.

Чтобы перевести правильную дробь из системы счисления с основанием d1 в систему с основанием d2, необходимо последовательно умножать исходную дробь и дробные части получающихся произведений на основание новой системы счисления d2. Правильная дробь числа в новой системе счисления с основанием d2 формируется в виде целых частей получающихся произведений, начиная с первого.

Если при переводе получается дробь в виде бесконечного или расходящегося ряда, процесс можно закончить при достижении необходимой точности.

При переводе смешанных чисел, необходимо в новую систему перевести отдельно целую и дробную части по правилам перевода целых чисел и правильных дробей, а затем оба результата объединить в одно смешанное число в новой системе счисления.

Пример 1. Перевести число 0,625(10) в двоичную систему счисления. Ответ: 0,625(10)=0,101(2).

Пример 2. Перевести число 0,6(10) в восьмеричную  систему счисления. Ответ: 0,6(10)=0,463(8).

Пример 2. Перевести число 0,7(10) в шестнадцатеричную  систему счисления. Ответ: 0,7(10)=0,В333(16).

Перевод двоичных, восьмеричных и шестнадцатеричных чисел в десятичную систему счисления.

Для перевода двоичного числа в десятичное необходимо его записать в виде многочлена, состоящего из произведений цифр числа и соответствующей степени числа 2, и вычислить по правилам десятичной арифметики:

Пример 1. Перевести число 101,11(2) в десятичную систему счисления. Ответ: 101,11(2)= 5,75(10) .

Для перевода восьмеричного числа в десятичное необходимо его записать в виде многочлена, состоящего из произведений цифр числа и соответствующей степени числа 8, и вычислить по правилам десятичной арифметики:

Пример 2. Перевести число 57,24(8) в десятичную систему счисления. Ответ: 57,24(8) = 47,3125(10) .

Для перевода шестнадцатеричного числа в десятичное необходимо его записать в виде многочлена, состоящего из произведений цифр числа и соответствующей степени числа 16, и вычислить по правилам десятичной арифметики:

Пример 3.  Перевести число 7A,84(16) в десятичную систему счисления. Ответ: 7A,84(16)= 122,515625(10) .