Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Шпора по ЭП, 1ый семестр (Мельников) [5557 вопросов].doc
Скачиваний:
285
Добавлен:
15.06.2014
Размер:
13.69 Mб
Скачать

6. Стабилитроны

Режим электрического пробоя p-n-перехода находит практическое применение для стабилизации напряжения. Такие приборы называются стабилитронами. Для изготовления стабилитронов используется кремний. Вольт-амперная характеристика стабилитрона приведена на рисунке.

Для работы используется обратная ветвь, где значительному изменению тока соответствует малое изменение напряжения. Точка А соответствует устойчивому пробою и определяет величину минимального тока Imin. После точки А ток резко возрастает и допустимая величина его Imax ограничивается лишь мощностью рассеяния P max:

где – напряжение стабилизации.

Рабочую точку на характеристике выбирают посередине рабочего участка, т.е.

Рабочее напряжение стабилитрона, являющееся напряжением пробоя

p-n-перехода, зависит от концентрации примесей и лежит в пределах 4 – 200 В.

Схема простейшего стабилизатора с использованием стабилитрона показана на рисунке. Резистор r является гасящим и одновременно задаёт рабочую точку. Величина сопротивления r должна быть значительно больше величины дифференциального сопротивления стабилитрона.

При изменении температуры напряжение стабилизации может изменяться.

Параметры стабилитронов:

Напряжение стабилизации Uст. ном – падение напряжения на стабилитроне

при номинальном значении тока Iст. Минимальный и максимальный ток стабилизации Iст min, Iст max. Дифференциальное сопротивление . Статическое сопротивление в рабочей точке.

Коэффициент качества стабилитрона . Температурный

коэффициент напряжения стабилизации – отношение относительного изменения напряжения стабилизации к изменению температуры

.

7. Варикапы, туннельные и обращенные диоды.

Варикапами называются полупроводниковые диоды, в которых используется зависимость барьерной ёмкости p-n-перехода от обратного напряжения.

Варикапы применяют в устройствах управления частотой колебательного контура, в параметрических схемах усиления, деления

и умножения частоты, в схемах частотной модуляции, управляемых фазовращателях и др.

Вольт-фарадная характеристикаварикапа:

Схема замещения:

Варикапы в основном используются

на высоких и сверхвысоких частотах, поэтому важную роль играет сопротивление потерь rб. Для его уменьшения необходимо выбирать материал с малым удельным сопротивлением. Используются кремний, германий.

Принцип работы туннельного диода (TД) основан на явлении туннельного эффекта в p-n-переходе, образованном вырожденными полупроводниками. Это приводит к появлению на вольт-амперной характеристике участка с отрицательным дифференциальным сопротивлением при прямом напряжении.

Концентрация примесей в p- и n- областях выбирается порядка ,

следствием чего является малая толщина перехода (порядка 0,01 мкм). Локальные уровни примесей образуют в вырожденных полупроводниках сплошную зону. Уровни Ферми располагаются соответственно в валентной зоне p-области и в зоне проводимости n-области. В состоянии термодинамического равновесия зона проводимости n-полупроводника и валентная зона p-полупроводника перекрываются на величину.

Известно, что частица, имеющая энергию, недостаточную для преодоления потенциального барьера, может пройти сквозь него, если с другой стороны этого барьера имеется свободный энергетический уровень, который она занимала перед барьером. Это явление называется туннельным эффектом. Чем уже потенциальный барьер и чем меньше его высота, тем больше вероятность туннельного перехода. Туннельный переход совершается без затраты энергии.

Вольт-амперная характеристика туннельного диода:

Таким образом, туннельный диод обладает отрицательным дифференциальным сопротивлением в некотором диапазоне прямых напряжений, что позволяет использовать его для генерации и усиления колебаний, а также в переключающих схемах.

Разновидностью туннельных диодов являются обращенные диоды, изготовляемые на основе полупроводника с концентрациями примесей в р- и n - областях диода, меньших, чем в туннельных, но больших, чем в обычных выпрямительных диодах.

Вольт-амперная характеристика обращенного диода представлена:

Прямая ветвь ВАХ обращенного диода аналогична прямой ветви обычного выпрямительного диода, а обратная ветвь аналогична обратной ветви ВАХ туннельного диода, т.к. при обратных напряжениях происходит туннельный переход электронов из валентной зоны р-области в зону проводимости n-области и при малых обратных напряжениях (десятки милливольт) обратные токи оказываются большими. Таким образом, обращенные диоды обладают выпрямляющим эффектом, но проводящее направление в них соответствует обратному включению, а запирающее – прямому включению.