- •Раздел 6 установки скважинных насосов с гидроприводом
- •6.1. Скважинные гидропоршневые насосные установки
- •6.1.1. Состав оборудования скважинных гидропоршневых насосных установок
- •6.1.2. Скважинные гидропоршневые двигатели, насосы и золотники
- •Характеристики гидропоршневых насосных агрегатов фирмы Kobe
- •6.1.3. Поверхностное оборудование гидропоршневых насосных установок
- •6.1.4. Некоторые расчетные зависимости рабочих параметров для подбора гидропоршневых насосных установок
- •Структура расчетов по подбору гидропоршневых насосов
- •Определение расхода рабочей жидкости
- •Определение силового давления рабочей жидкости
- •Среднее давление рабочей жидкости на входе в погружной агрегат
- •Определение мощности и коэффициента полезного действия гидропоршневой установки
- •6.2. Скважинные струйные насосные установки
- •6.2.1. Конструкции скважинных струйных насосов
- •Технические характеристики
- •Технические характеристики струйных аппаратов
- •6.2.2. Поверхностное оборудование струйных насосных установок
- •6.3. Скважинные гидроштанговые насосные установки
- •6.3.1. Схемы скважинных гидроштанговых насосов и двигателей
- •Параметры работы гидроштангового насоса бгн-ф
- •6.3.2. Схемы поверхностного оборудования скважинных гидроштанговых установок
- •Технические характеристики ску
- •Технические характеристики установки угшн-5-15-1000
- •6.3.3. Некоторые теоретические и расчетные зависимости рабочего процесса гидроштангового насоса
- •6.4. Гидроимпульсные насосные установки
- •Теоретические основы работы гидротаранов и гидроимпульсных насосов
- •6.5. Турбонасосные установки
- •6.6. Вибрационные насосные установки
- •Технические характеристики вибрационного насоса
- •Принцип действия вибрационного насоса
- •Раздел 7 штанговые скважинные насосные установки
- •7.1. Штанговая скважинная насосная установка. Области применения
- •7.1.1. Классификация скважинных штанговых насосных установок
- •7.2. Оборудование скважинных штанговых насосных установок для добычи нефти
- •7.2.1. Механические приводы скважинных штанговых насосных установок. Классификация, области применения Общая классификация приводов штангового скважинного насоса
- •Общая классификация индивидуальных приводов штанговых насосов
- •Индивидуальные механические приводы
- •7.2.1.1. Балансирные станки-качалки
- •Станки-качалки по гост 5866-76
- •Основные параметры станков-качалок гост 5866-56
- •Основные параметры станков-качалок гост 5866-66
- •Основные параметры станков-качалок по гост 5866-76
- •Ряд станков-качалок, выпускаемых румынским заводом «Вулкан» (г. Бухарест)
- •Технические характеристики станков-качалок типа скд по ост 26-16-08-87
- •Основные параметры станков-качалок
- •Технические характеристики редукторов
- •Технические характеристики станков-качалок по ту 3665-012-05785537-9-3 (ао «Ижнефтемаш»)
- •Технические характеристики станков- качалок, выпускаемых оао «Редуктор» по ост 26-16-08-87
- •Технические характеристики станка-качалки конструкции АзИнмаш
- •Технические характеристики станков-качалок конструкции спктб «Нефтегазмаш», г. Уфа
- •Станки-качалки по ост 26-16-08-87
- •Тихоходные станки-качалки
- •Технические характеристики
- •Технические характеристики cm-456d-305-120
- •7.2.1.2. Станки-качалки с фигурным балансиром
- •7.2.1.3. Безбалансирные станки-качалки
- •7.2.2. Редукторы механических приводов скважинных штанговых насосных установок
- •7.2.3. Гидравлические и пневматические приводы скважинных штанговых насосных установок
- •7.2.4. Конструктивные особенности длинноходовых скважинных насосных установок
- •Технические характеристики установки
- •Технические характеристики
- •Технические характеристики установки
- •Технические характеристики установки
- •7.2.5. Оборудование устья скважины при эксплуатации сшну
- •Штанговращатель.
- •Штоки сальниковые устьевые шсу
- •Технические характеристики подвески устьевого штока
- •Технические характеристики шсу
- •Технические характеристики устьевых сальников
- •Технические характеристики устьевого оборудования
- •7.2.6. Силы, действующие в точке подвеса штанг
- •7.2.7. Уравновешивание балансирных станков-качалок
- •7.2.7.1. Определение усилий в шатуне при различных способах уравновешивания
- •7.2.7.2. Определение тангенциальных усилий на пальце кривошипа
- •7.2.8. Кинематика приводов скважинных штанговых насосных установок
- •7.2.8.1. Кинематическая зависимость между длиной хода точки подвеса штанг и размерами балансирного привода
- •7.2.8.2. Выбор рациональных значений отношений длин звеньев
- •7.2.8.3. Влияние взаимного расположения узлов балансирного привода на его габариты и вес
- •Расположение двигателя относительно редуктора
- •Относительное расположение опоры балансира и опоры траверсы
- •7.70. Расположение опоры балансира и опоры траверсы под балансиром
- •Размещение шарнирного четырехзвенника между опорой балансира и точкой подвеса штанг
- •Расположение редуктора относительно рамы станка-качалки
- •7.2.9. Методика расчета и подбора штанговых скважинных насосных установок
- •7.2.10. Исследование скважин. Классификация неисправностей в работе сшну. Динамометрирование
- •Влияние неисправностей на работу сшну
- •Классификация методов диагностики
- •Расчетные величины
- •Диагноз
- •7.2.11. Скважинные штанговые насосы-основные виды и области применения
- •Сравнение характеристик насосов
- •Области применения штанговых насосов
- •Возможности применения штанговых насосов в обсадных колоннах
- •Спецификация базовых типов скважинных штанговых насосов
- •Примеры обозначения насосов
- •Соответствие обозначения насосов по российскому стандарту и api Spec 11ax
- •7.2.11.1. Цилиндры скважинных штанговых насосов
- •Технические характеристики безвтулочных цилиндров скважинных насосов
- •Материал цилиндров и условия эксплуатации
- •7.2.11.2. Плунжеры скважинных штанговых насосов
- •Технические характеристики плунжеров
- •Материалы, рекомендуемые для изготовления плунжеров
- •Группы посадок сопряжения «плунжер — цилиндр»
- •7.2.11.3. Клапаны скважинных штанговых насосов
- •Материалы деталей клапанов скважинных штанговых насосов
- •Технические характеристики клапанов
- •7.2.11.4. Замковые опоры, уплотнительные элементы, автосцепы, сливные устройства и штоки скважинных штанговых насосов
- •Технические характеристики замков насосов
- •Технические характеристики автосцепа
- •Технические характеристики штоков
- •7.2.11.5. Общие требования к скважинным штанговым насосам
- •7.2.12. Насосные штанги
- •Характеристика материалов отечественных насосных штанг
- •Соответствие прочности штанг российского производства классам прочности штанг по api Spec 11в
- •Технические характеристики полых штанг, выпускаемых в рф
- •Основные размеры полых насосных штанг фирмы sbs
- •Размеры штанги по стандарту api SpecllB
- •Размеры муфты, по стандарту api Spec 11b
- •Области применения насосных штанг
- •Масса тяжелого низа колонны штанг
- •7.2.13. Вспомогательное оборудование скважинных штанговых насосных установок: скребки, центраторы, скважинные дозаторы, штанговые амортизаторы, газосепараторы
- •7.2.13. Станции управления работой скважинных штанговых насосных установок
- •Основные технические характеристики сус «Омь»
- •Основные технические данные и характеристики сус «Омь-2кс»
- •7.3. Установки штанговых винтовых насосов для добычи нефти
- •7.3.1. Состав установки и ее особенности
- •7.3.2. Классификация вшну
- •7.3.3. Скважинный штанговый винтовой насос
- •Технические характеристики винтовых штанговых насосов зарубежных фирм
- •7.3.4. Привод скважинных штанговых винтовых насосов
- •7.3.5. Особенности работы и расчета штанг с винтовыми насосами
- •7.3.6. Подбор оборудования скважинных штанговых винтовых насосных установок
- •Раздел 8. Оборудование для сбора и подготовки продукции добывающих скважин
- •8.1. Общая схема системы сбора продукции скважин
- •Система сбора и подготовки газа и конденсата
- •Абсорбционная осушка газа
- •Физико-химические свойства гликолей
- •Адсорбционная осушка газа
- •8.2. Оборудование для замера дебита скважин
- •Параметры установок типа «спутник»
- •Технические характеристики переключателя псм-1м:
- •Технические характеристики
- •Технические характеристики скж
- •Параметр измеряемой среды
- •Технические характеристики установки «асма»
- •8.3. Оборудование для подготовки нефти и газа
- •Параметры сепараторов
- •Технические характеристики печей
- •8.4. Система обработки и использования пластовых и сточных вод
- •Технологические люки отстойников типа опф-3000
- •8.5. Насосные и компрессорные станции системы сбора и подготовки продукции добывающих скважин
- •Технические данные насоса mw 7.3 zk-33
- •Зашита многофазных насосов фирмы «Борнеманн» [55]
- •Компрессорная установка 5вкг-10/6
- •Технические характеристики винтовых компрессоров
- •Компрессорные установки 7вкг-30/7 и 7вкг-50/7
- •Компрессорные установки 7вкг-30/7 и 7вкг-50/7
- •Компрессорная установка 6гв-18/6-7
- •Раздел 9. Оборудование для воздействия на пласт
- •9.1. Оборудование для поддержания пластового давления и вытеснения нефти водой и газом
- •9.1.1. Оборудование водозабора и подготовки воды
- •Параметры насосов типа атн
- •Параметры насосов типа эцв
- •9.1.2. Оборудование для закачки воды в пласт
- •9.1.2.1. Кустовые насосные станции
- •Характеристики агрегатов типа цнс
- •9.1.2.2. Установки погружных центробежных насосов для поддержания пластового давления
- •Показатели рабочей жидкости для установок погружных центробежных электронасосов типа уэцп и уэцпк
- •Состав оборудования установок для подъема воды
- •Комплектующие изделия и оборудование установок уэцп
- •9.1.2.3. Устьевое и скважинное оборудование системы ппд
- •9.2. Оборудование для закачки газа в пласт
- •9.3. Оборудование для термического и химического воздействия на пласт
- •9.3.1. Оборудование для подготовки и нагнетания в пласт горячей воды и пара
- •9.3.1.1. Оборудование для нагрева воды и нагнетания теплоносителя
- •Параметры парогенераторных установок
- •9.3.1.2. Оборудование теплотрассы, устья скважины и внутрискважинное оборудование
- •Термоизолированные трубы
- •9.3.1.3. Оборудование для электрического и огневого прогрева призабойной зоны скважины
- •9.3.1.4. Оборудование для возбуждения и поддержания внутри пластового горения
- •9.4. Оборудование для химического воздействия на пласт
- •9.4.1. Кислотные обработки пласта и призабойной зоны пласта
- •Составы для освоения скважин и повышения их продуктивности [57]
- •9.4.2. Оборудование для кислотных обработок пласта
- •Характеристика работы насоса 5нк-500
- •Типы и основные параметры насосных передвижных нефтепромысловых установок
- •Технические характеристики Автомобиль
- •Силовая установка
- •Коробка передач
- •(Подача л/сек) и давление (мПа) насоса 11т
- •Раздел 10 оборудование для проведения ремонтных работ на скважинах
- •10.1. Технологические операции и оборудование для подземного ремонта скважин, их классификация
- •Виды работ, относящиеся к текущему ремонту
- •Виды работ, относящиеся к капитальному ремонту
- •Классификация оборудования для выполнения прс
- •10.2. Особенности оборудования прс и основные направления его совершенствования
- •10.3. Классификация оборудования для выполнения прс
- •10.4. Инструмент для выполнения спускоподъемных операций
- •10.4.1. Элеваторы
- •Одноштропные элеваторы
- •Технические характеристики эта-32 эта-50 эта-60бн
- •Технические характеристики этар
- •Технические характеристики элеваторов эзн
- •Технические характеристики
- •Характеристики
- •Технические характеристики
- •Технические характеристики элеваторов этад
- •Технические характеристики элеваторов вм этад
- •Технические характеристики элеваторов типа эта-п
- •Элеваторы штанговые
- •Технические характеристики
- •Элеватор полированных штанг эпш-20
- •Технические характеристики элеватора эпш-20
- •Технические характеристики элеватора штанговые типа вм.Эша [62]
- •10.4.2. Спайдеры
- •Технические характеристики
- •Технические характеристики спайдера сг-80
- •Технические характеристики спайдера су-80
- •10.4.3. Трубные ключи
- •Технические характеристики цепных ключей для нкт
- •Шарнирные ключи
- •Технические характеристики ключа ктнд
- •Технические характеристики трубных ключей
- •Технические характеристики ключей типа ктд
- •Характеристики ключей типа кот
- •Технические характеристики стопорных ключей
- •10.4.4. Штанговые ключи
- •Технические характеристики штанговых ключей типа кш
- •Технические характеристики ключа кшк
- •10.5. Средства механизации для спускоподъемных операций
- •10.5.1. Трубные механические ключи
- •Автомат апр-2вб
- •Технические характеристики
- •Автомат апр-гп
- •Ключи механические универсальные кму
- •Технические характеристики
- •Ключ подвесной кгп
- •Технические характеристики
- •Характеристики
- •10.5.2. Штанговые механические ключи Автоматический штанговый ключ ашк-тм
- •Технические характеристики
- •Технические характеристики
- •Технические характеристики
- •10.6. Грузоподъемное оборудование
- •10.6.1. Вышки и мачты
- •Технические характеристики
- •10.6.2. Талевые системы
- •Технические характеристики кронблоков
- •Технические характеристики талевых блоков
- •Технические характеристики крюков
- •10.6.3. Подъемные лебедки
- •Технические характеристики
- •Технические характеристики агрегата а-50у [63]
- •Тартальный барабан
- •10.6.4. Агрегаты подземного ремонта скважин
- •Характеристики самоходных подъемников
- •Агрегаты для подземного ремонта при безвышечной эксплуатации скважин
- •Технические характеристики агрегатов для прс
- •Технические характеристики агрегатов типа АзИнМаш
- •Технические характеристики агрегата а-50у
- •10.6.5. Оборудование для ремонта скважин под давлением
- •10.6.6. Оборудование для работы с колоннами непрерывных труб
- •10.6.6.1. Основные преимущества оборудования с непрерывными трубами
- •Диаметры кнт в зависимости от глубины подвескя в максимального давления технической воде.
- •10.6.6.2. Конструкции агрегатов для работы с кнт
- •10.6.6.4. Оборудование устья скважин при работе с кнт
- •10.6.6.5. Объемный гидропривод исполнительных органов агрегатов для работы с кнт
- •10.6.6.6. Материалы, применяемые для изготовления непрерывных труб
- •10.7. Наземное технологическое оборудование
- •10.7.1. Противовыбросовое устьевое оборудование
- •Технические характеристики ппг и ппр
- •Технические характеристики
- •10.7.2. Роторы
- •Характеристики
- •10.8. Оборудование для ликвидации аварий и инструмент для ловильных работ
- •Трубные ловители наружного захвата типа лтн
- •Ловители наружные типа лтнк [69]
- •Ловители штанг типа лш и лшс
- •Колокол типа к Колокол типа кс
- •Технические характеристики колоколов
- •Трубные ловители внутреннего захвата типа лтв
- •Трубные ловители внутреннего захвата типа лтв-убт
- •Ловитель внутреннего захвата типа лтв-убт
- •Технические характеристики ловителей лтв
- •Труболовки внутренние типа тв
- •Труболовка типа тв с направлением
- •Труболовки внутренние освобождающиеся типа твм1
- •Техническая характеристика труболовок типа тв
- •Технические характеристики труболовок типа твм1
- •Техническая характеристика труболовок типа лтву
- •Техническая характеристика метчиков типа мб
- •Технические характеристики метчиков типа мсз
- •Фрезеры забойные типа фз
- •Технические характеристики фрезеров забойных
- •Фрезер забойный загнутый типа фзв тяжелого вида (зфзв)
- •Технические характеристики фрезеров фзв
- •Технические характеристики фрезеров фзк
- •Фрезер забойно-кольцевой типа фзк
- •Технические характеристики фрезеров 2фп
- •Техническая характеристика фрезеров фк
- •Фрезеры специальные калибрующие типа фс
- •Техническая характеристика фрезеров фс
- •Фрезер специальный калибрующий типа фс
- •Фрезерные колонные конусные типа фкк
- •Технические характеристики фрезеров фкк
- •Фрезеры-райберы типов фрл, рими фрс
- •Технические характеристики фрезеров-райберов
- •Технические характеристики фрезеров флм
- •Фрезеры ловители магнитные с механическим захватом типа фмз
- •Устройство для очистки забоя скважин типа уозс
- •Технические характеристики уозс
- •Устройство очистки забоя скважины типа уозс
- •Технические характеристики шламометаллоуловителей типа шму
- •Комплексы очистки скважин типа кос
- •Технические характеристики фрезеров фзв
- •Состав оборудования кос-01
- •Желонки очистные ремонтные типа жор
- •Желонка очистная ремонтная типа жор
- •Техническая характеристика желонок типа жор
- •Клапаны обратные тарельчатые типа кот
- •Технические характеристики клапанов типа кот
- •Устройства задерживающие типа уз
- •Устройство задерживающее типа уз
- •Техническая характеристика устройств типа уз
- •Клапаны сбивные типа кс.
- •Техническая характеристика клапанов типа кс
- •Клапан сбивной типа кс
- •Перья типа п
- •Техническая характеристика перьев типа п
- •Комплексы очистки скважин типа кос-02
- •Технические характеристики комплексов кос-02
- •Комплект поставки оборудования типа кос-02
- •Воронки
- •Воронка типа в
- •Яссы гидромеханические типа гм.
- •Технические характеристики яссов типа гм
- •Кумулятивный перфоратор
- •Технические характеристики удочек нешарнирных
- •Технические характеристики удочек шарнирных
- •Технические характеристики печатей
- •Содержание (стр. В книге)
- •Раздел 6. Установки скважинных насосов с гидроприводом
- •6.1. Скважинные гидропоршневые насосные установки 3
- •Раздел 7. Штанговые скважинные насосные установки
- •Раздел 8. Оборудование для сбора и подготовки, продукции добывающих скважин
- •Раздел 9. Оборудование для воздействия на пласт
- •Раздел 10. Оборудование для проведения ремонтных работ на скважинах
6.1.2. Скважинные гидропоршневые двигатели, насосы и золотники
Погружной агрегат состоит из насоса и двигателя с золотниковым распределением потока жидкости. Двигатель может быть дифференциальным или двустороннего действия, а насос — дифференциальным, одно- или двустороннего действия. Учитывая различное расположение рабочих полостей в двигательной и насосной частях, возможно создание более 900 схем погружных агрегатов гидропоршневых насосов. Число схем, реализованных в серийных или опытных образцах, невелико. В основном это агрегаты с двигателем и насосом двустороннего или дифференциального действия. Наиболее простое конструктивное решение агрегата возможно при двигателе и насосе дифференциального действия, агрегаты двустороннего действия сложнее, но у них более высокий КПД и более плавный режим работы (скорости движения поршней вверх и вниз близки).
Рассмотрим наиболее простой агрегат дифференциального действия, разработанный в ОКБ БН по схеме, предложенной Л. Г. Чичеровым, В. М. Калининым, и др. конструкторами [1]. Погружной агрегат (рис. 6.4) состоит из поршня и цилиндра двигателя 1, штока 2, соединяющего поршень двигателя с поршнем насоса, золотника 3, поршня и цилиндра насоса 4. По каналу А рабочая жидкость поступает под поршень двигателя в полость Б, в которой создается постоянное давление рабочей по лости.
Рис. 6.4. Схема дифференциального погружного агрегата
При положении поршней и золотника, указанном на рисунке, полости Б и В (под и над поршнем двигателя) соединены друг с другом. Шток нижним своим концом выходит в полость насоса, где давление равно давлению столба откачиваемой жидкости. Давление рабочей жидкости больше, чем давление столба откачиваемой жидкости. На поршень двигателя сверху и снизу действует одинаковое давление рабочей жидкости. На поршень насоса сверху и снизу действует давление столба откачиваемой жидкости. На шток сверху действует давление рабочей жидкости, а снизу — откачиваемой жидкости. Таким образом, создается сила, действующая на шток сверху вниз и продвигающая всю поршневую группу вниз. Происходит переток отбираемой жидкости из полости Д через нагнетательный клапан в полость Г над поршнем насоса. Всасывающий клапан насоса в это время закрыт. При этом часть откачиваемой жидкости в объеме штока, входящего в цилиндр насоса, выталкивается в подъемный канал.
В крайнем нижнем положении поршней продольная канавка на верхней части штока соединяет полость Б с камерой под золотником Е. Поскольку нижняя головка золотника диаметром больше, чем верхняя, а давление над и под золотником одинаково и равно давлению рабочей жидкости, золотник под действием разности сил (произведение давления на площадь) поднимается в верхнее положение и сообщает каналы Б и С. Таким образом, полость Б сообщается с полостью Г, над поршнем двигателя устанавливается давление столба откачиваемой жидкости. Под поршнем двигателя, в полости Б, остается постоянное давление рабочей жидкости. В результате на поршень двигателя начинает действовать сила, обусловленная разностью давлений в полостях Б и В, и поршневая группа начинает движение вверх.
У насоса закрывается нагнетательный и открывается всасывающий клапаны. Происходит всасывание жидкости из полости скважины в цилиндр насоса (в полость Д). В крайнем верхнем положении продольная канавка, расположенная в нижней части штока, соединяет полость Е у золотника с полостью Г. Давление под золотником падает до давления столба откачиваемой жидкости. Над золотником действует высокое давление рабочей жидкости. Под действием перепада давления золотник передвигается в нижнее положение, показанное на рис. 6.4. После этого рабочий цикл погружного агрегата повторяется.
Конструкция погружного агрегата имеет следующие особенности. Поршни двигателя и насоса выполнены из стали с покрытием их поверхности хромом. Слой хрома толщиной около 0,07 мм отличается высокой твердостью и хорошей износоустойчивостью. Напомним, что обычное декоративное покрытие имеет меньшую толщину хрома (около 0,012 — 0,02 мм).
Цилиндры двигателя и насоса составлены из стальных втулок (сталь марки 38ХМЮА) с азотированной внутренней поверхностью. Образующиеся при азотировании карбиды позволяют повысить твердость поверхности втулок до 80 по шкале HRA. В результате в гидропоршневых насосах используется наиболее износоустойчивая пара трения. Такие же пары используются в штанговых насосах при особо тяжелых условиях их эксплуатации.
Уплотнения подвижных деталей в агрегате щелевые. Они расположены между золотником и штоком, золотником и корпусом золотника, корпусом под золотники и штоком.
Каналы А, Б, С при сбрасываемом погружном агрегате размещены в седле, спускаемом на НКТ. Это позволяет увеличить диаметры поршней агрегатов. Разобщение каналов осуществляется резиновыми манжетами, размещенными на погружном агрегате.
Клапаны насосной части шаровые (шар и седло). Они те же, что и в штанговых насосах (см. гл. 2 настоящей книги).
Длина хода поршней у погружных агрегатов гидропоршневых насосов достигает 1 м, число ходов в минуту — 30—60.
Погружной агрегат, сбрасываемый в НКТ диаметром 73 мм, имеет внешний диаметр 58 мм и длину около 4 м.
Скважина для гидропоршневых насосных установок оборудуется двумя колоннами НКТ, спускаемыми концентрично или параллельно, или одной колонной НКТ и пакером, уплотняющим пространство между НКТ и обсадной колонной. Таким образом, образуются два канала — один для подъема смеси добываемой жидкости и отработанной рабочей жидкости (НКТ или пространство между НКТ и обсадной колонной), другой — для рабочей жидкости (НКТ).
В случае использования замкнутой системы циркуляции рабочей жидкости требуется спуск еще одной колонны НКТ.
При трубном варианте погружной агрегат спускается в скважину на НКТ. При сбрасываемом агрегате на НКТ спускается седло для установки агрегата и под ним обратный шаровой клапан, позволяющий осуществить обратный поток рабочей жидкости при подъеме сбрасываемого погружного агрегата.
Опыт работы в нашей стране с отечественными установками гидропоршневых насосов показал, что сбрасываемые погружные агрегаты могут работать в среднем с межремонтным периодом около 9 месяцев (270 сут). Подъем их производился без подъема труб — жидкостью. НКТ и пакеры не поднимались по несколько лет. Ожидалось, что подъем добываемой жидкости по обсадной колонне (при установке пакера) может привести к отложению парафина на обсадных трубах и осложнениям при подъеме НКТ и пакера. Однако опыт эксплуатации показал несостоятельность такого опасения. Смешивание добытой и рабочей жидкостей при подъеме их по обсадной колонне приводило к снижению относительного содержания газа, а также смол и парафинов в смеси и к незначительному отложению их на обсадных трубах. Такие результаты были получены на месторождениях Башкирии, Татарии и Самарской области. Необходимо учитывать, что большее, чем в этих районах, содержание в добываемой жидкости смол и парафинов может привести к худшим результатам. Поэтому в каждом частном случае необходимы анализ условий эксплуатации и обоснованный выбор схем оборудования скважин.
Наземное оборудование состоит из оборудования устья, силового насосного агрегата, оборудования для подготовки рабочей жидкости, регулирующей и регистрирующей аппаратуры.
Оборудование устья имеет детали для подвески НКТ на колонной головке, многоходовой кран для направления рабочей и отбираемой жидкостей в соответствующие каналы при спуске, работе и подъеме погружного агрегата, пружинного ловителя, свободно сбрасываемого агрегата и мачты с талевой системой с ручным приводом для извлечения агрегата из скважины или спуска его в скважину.
Силовой насосный агрегат состоит из насоса и его привода. Наиболее часто применяется трехплунжерный насос. В нашей стране применяется насос с горизонтальным расположением цилиндров, в США некоторые фирмы используют насосы с вертикальным расположением цилиндров. Увеличенная скорость ходов плунжеров (около 400 в минуту) позволяет уменьшить габариты насосов.
Насосы развивают давление от 16 до 30 МПа. Подача насосов достигает десятков литров в секунду. Параметры насосов зависят от характеристики двигателя погружного агрегата и от того, является ли насос приводом индивидуальной установки (предназначенной для одной скважины) или групповой установки (для нескольких скважин). Насосы подают к скважине жидкость, обычно нефть, очищенную от механических примесей и отделенную от воды и газа. Есть примеры использования в качестве рабочей жидкости воды с присадками, обеспечивающими смазку трущихся частей оборудования.
Приводом насоса чаще всего служит электродвигатель. В некоторых случаях выгодно применять газомотор, работающий на нефтяном газе. Это экономично, поскольку применяется дешевое топливо и, с другой стороны, газомотор позволяет легко изменять частоту вращения приводного вала силового насоса и регулировать таким образом его подачу.
Оборудование для подготовки рабочей жидкости (при незамкнутой ее циркуляции) имеет сепараторы для отделения газа, воды и механических примесей, отстойники, дозировочные насосы, подогреватели. Обычно применяются сепараторы объемного типа, вертикальные или горизонтальные, с подогревом поступающей смеси для лучшей деэмульсации и снижения вязкости смеси. После объемных сепараторов устанавливают батарею циклонных сепараторов для более тщательной очистки рабочей жидкости от газа и механических примесей. В некоторых установках применяют отстойники большой емкости.
Для улучшения деэмульсации смеси рабочей и добытой жидкостей и отделения воды в смесь иногда подают реагенты-деэмульгаторы. Деэмульгаторы подаются в небольших объемах (десятки граммов на 1 м3 жидкости) дозировочными насосами с малыми подачами. Это обычно одноплунжерные насосы, имеющие регулируемую подачу. В качестве деэмульгаторов можно использовать неионогенный деэмульгатор дисолван и ПАВы различных марок.
В установках гидропоршневых насосов имеется возможность подачи деэмульгатора не только в поверхностную систему, но и в подготовленную рабочую жидкость, направляемую в скважину. В этом случае действие деэмульгатора проявляется уже при выходе жидкости из погружного двигателя в НКТ. Предупреждается образование стойких высоковязких эмульсий, снижается гидравлическое сопротивление движению смеси в трубах, облегчается отделение воды в системе подготовки рабочей жидкости и при подготовке товарной нефти.
Деэмульсация при подготовке рабочей жидкости и отделение воды облегчаются при подогреве жидкости. Подогреватели могут быть с теплоносителем в виде пара или горячей воды или электрическими в виде специальных лент, в изоляции которых уложены электропроводящие жилы с большим сопротивлением (из константана, нихрома и т.д.). Подогрев осуществляется в отстойниках или сепараторах, или в линиях, подводящих смесь от скважины к этим устройствам.
Система подготовки рабочей жидкости может включать все перечисленные части, а может быть и значительно упрощена в зависимости от конкретной характеристики добываемой жидкости и климатических условий.
Опыт эксплуатации гидропоршневых насосов в нашей стране показал, что для нормальной работы погружного агрегата достаточно снизить содержание воды в рабочей жидкости до 5 % и механических примесей до 0,5—0,3 г/л.
Контроль за режимом работы установки гидропоршневого насоса, поддержание этого режима или изменение его осуществляются аппаратурой, включающей расходомер, манометр, стабилизатор режима, регулирующие вентили.
В агрегатах одностороннего действия (рис. 6.5, а) шток с двумя поршнями совершает возвратно-поступательное движение в результате попеременной подачи жидкости из напорного трубопровода то в полость 3, то 4. Жидкость подается золотниковым устройством. В результате в насосе одинарного действия при ходе поршня вверх пластовая жидкость попадает через всасывающий клапан 1 в полость 6, а при ходе поршня вниз вытесняется через нагнетательный клапан 2 в напорный трубопровод. Клапаны 1 и 2 самодействующие, обычно шарикового типа [2, 3].
Рис. 6.5. Схемы скважинных агрегатов одностороннего, двустороннего и дифференциального действия (слева-направо).
Полость 5 соединена с затрубным пространством с помощью отверстия, и при перемещении поршня вверх и вниз жидкость может свободно циркулировать.
В агрегатах двустороннего действия при перемещении поршня насоса вверх пластовая жидкость попадает через клапан 1 в полость и вытесняется из полости 5 через клапан 2.
При ходе поршня вниз пластовая жидкость вытесняется из полости 6 через клапан 2 и поступает в полость 5 через клапан 1.
Таким образом, при каждом ходе поршня жидкость подается в напорный трубопровод.
В агрегатах с насосом дифференциального действия поршень насоса выполнен сквозным с расположенным в нем нагнетательным клапаном 2. При ходе поршня вниз всасывающий клапан 1 закрыт, из полостей 5 и 6 в напорный трубопровод вытесняется объем жидкости, равный объему штока, находящегося в полостях, при ходе поршня вверх нагнетательный клапан 2 закрыт, а всасывающий 1 открыт. В результате пластовая жидкость вытесняется из полости 5 в напорный трубопровод и поступает в полость 6 [2, 3].
В нижней части труб устанавливается специальное седло, а на устье — ловитель и специальная обвязка, позволяющая изменять направления потоков в колоннах насосно-компрессор-ных труб.
Для спуска агрегата колонны труб заполняются жидкостью, после чего спускается агрегат, который под действием потока жидкости, подаваемой силовым насосом, опускается, устанавливается на седле и фиксируется замком. После его установки поток жидкости начинает проходить через агрегат, и последний откачивает пластовую жидкость. Время спуска агрегата на седло, момент его установки и начало работы контролируются по показаниям манометра, установленного на нагнетательном патрубке силового насоса.
Для подъема агрегата направление потоков жидкости в колоннах труб изменяется на противоположное посредством переключения четырехходового крана. При этом давление жидкости, действующее на агрегат снизу, создает усилие, направленное вверх, которое извлекает агрегат из замка и перемещает его вверх к устью скважины.
Агрегат после достижения им устья захватывается специальным ловителем. При этом силовой насос, подающий рабочую жидкость, автоматически отключается, и операция заканчивается. Момент выпрессовки агрегата из замка и время подъема его на поверхность контролируются манометром.
Помимо перечисленных отличительных признаков установки отличаются конструктивным исполнением и взаимным расположением каналов для подвода и отвода жидкости от ГПНА. В качестве каналов могут использоваться специальные колонны НКТ либо внутренняя полость эксплуатационной колонны, а относительно друг друга колонны могут располагаться концентрично или же параллельно. В зависимости от типа гидравлической схемы установки и типа применяемого ГПНА конструкции нижней части внутрискважинного оборудования могут быть различными.
При использовании открытой гидравлической схемы применяют следующие варианты конструкций (рис. 6.6).
Рис. 6.6. Оборудования скважин ГПНУ с открытой схемой циркуляции рабочей жидкости
Фиксированный ГПНА с двумя концентрично расположенными колоннами труб (рис. 6.6, а). В этом случае ГПНА 4 спускается на центральной колонне труб 1 а его нижняя часть с уплотнением устанавливается на опорном конусе 5, который укреплен на колонне НКТ 2 большого диаметра. Рабочая жидкость подводится к гидродвигателю по центральной колонне НКТ 1, а пластовая жидкость в смеси с рабочей отводится по концентричному каналу, образованному колоннами НКТ 1 и 2.
Фиксированный ГПНА (рис. 6.6, б) с одной колонной НКТ. ГПНА опускается на колонне НКТ 1 и устанавливается нижней частью на пакере 6, расположенном в эксплуатационной колонне 3.
Как и в предыдущей схеме, рабочая жидкость подводится по центральной НКТ 1, а поднимается по кольцевому каналу между НКТ 1 и эксплуатационной колонной 3.
Свободный ГПНА с двумя параллельными колоннами НКТ (рис. 6.6, в). Агрегат Испускается в скважину по НКТ большого диаметра 1, по которой к нему подводится рабочая жидкость и в нижней части которой установлены седло с замком и обратный клапан 10.
Параллельная колонна труб 2 служит для подъема смеси пластовой и рабочей жидкостей.
Свободный ГПНА с одной колонной НКТ (рис. 6.6, г). Агрегат 8 располагается в колонне НКТ 1, в нижней части 9 которой установлены седло с замком и обратный клапан 10. Хвостовик колонны фиксируется в отверстии пакера 7, установленного в жсплуатационной колонне 3. Потоки жидкостей аналогичны потокам схемы (рис. 6.6, б).
При подъеме свободного агрегата в схеме поток жидкости в канале, служащем для подъема пластовой жидкости, изменяется на противоположный, обратный клапан 10 закрывается, и агрегат перемещается вверх. Мощность привода которых в большинстве случаев составляет от 14 до 300 кВт. Для подбора агрегата, соответствующего требуемому режиму эксплуатации скважины, выпускаются насосы многих типоразмеров, причем каждый из них имеет наборы плунжеров с уплотнениями различных диаметров (от 30 до 95 мм), позволяющими ступенчато изменять подачу насосов (от 130 до 1700 л/мин) и обеспечивать максимальное давление до 35,0 МПа. Число ходов плунжеров составляет 300—450 в минуту. Для уменьшения числа оборотов вала насоса применяются понижающие редукторы.
Наибольшее число типоразмеров оборудования, в том числе более 70 типоразмеров гидропоршневых насосов, представляет фирма Kobe. В табл. 6.1 приведены характеристики некоторых гидропоршневых насосных агрегатов этой фирмы.
Таблица 6.1
