- •Предмет и задачи химии. Место химии в системе естественных наук. Химические дисциплины в системе медицинского образования
- •Взаимосвязь между процессами обмена веществ и энергии в организме
- •Химическая термодинамика как теоретическая основа биоэнергетики. Предмет и методы химической термодинамики
- •Термодинамические системы: изолированные, закрытые, открытые, гомогенные, гетерогенные. Понятие о фазе.
- •5.Первое начало термодинамики. Внутренняя энергия. Изобарный и изохорный тепловые эффекты.
- •6.Энтальпия . Закон Гесса. Термохимические уравнения.
- •Стандартные теплоты образования и сгорания. Термохимические расчеты и их использование для энергетической характеристики биохимических процессов
- •Второе начало термодинамики. Энтропия.
- •2 Закон термодинамики
- •10. Термодинамические условия равновесия. Критерии направления самопроизвольно протекающих процессов. Энтальпийный и энтропийный факторы.
- •11.Обратимые и необратимые в термодинамическом смысле процессы. Процессы жизнедеятельности как пример необратимых процессов.
- •12.Обратимые и необратимые по направлению реакции. Понятие о химическом равновесии.
- •13. Константа химического равновесия и способы ее выражения: Кс, Кр, Ка
- •14.Закон действующих масс. Прогнозирование смещения химического равновесия на основе принципа Ле-Шателье.
- •15.Понятие о термодинамике открытых систем. Стационарное состояние организма и его подсистем.
- •16.Роль растворов в процессах жизнедеятельности организмов. Вода как растворитель. Значение явления растворения в процессах метаболизма.
- •17.Растворимость газов в жидкостях и ее зависисмость от природы газа и растворителя, от температуры. Закон Генри. Закон Сеченова. Закон Дальтона.
- •18.Растворимость газов в крови. Кесонная болезнь.
- •19.Растворимость н.М.С. В жидкостях. Факторы, влияющие на растворимость. Н.М.С. В жидкостях. Закон распределения Нернста.
- •20.Способы выражения состава раствора. Закон эквивалентов.
Стандартные теплоты образования и сгорания. Термохимические расчеты и их использование для энергетической характеристики биохимических процессов
Стандартная теплота образования.
Из закона сохранения энергии следует, что, когда вещество образуется из атомов и (или) более простых веществ, внутренняя энергия или энтальпия системы меняется на определенную величину, называемую теплотой образования данного вещества. Теплота образования может быть определена различными способами, в том числе прямыми калориметрическими измерениями и путем косвенного расчета (на основе закона Гесса) из теплоты реакции, в которой участвует данное вещество. При проведении расчетов пользуются стандартными (при p = 1 атм и T = 298 K) теплотами образования веществ, входящих в уравнение реакции. Например, стандартную теплоту (энтальпию) образования метана можно вычислить с помощью термохимического уравнения
Хотя эта реакция практически неосуществима при 25 С, стандартная теплота образования метана косвенно рассчитывается по измеренным теплотам сгорания метана, водорода и графита. На основе закона Гесса устанавливается, что теплота реакции равна разности между теплотами сгорания веществ, указанных в левой части уравнения, и теплотами сгорания веществ, указанных в правой части уравнения реакции (взятых с соответствующими знаками и стехиометрическими коэффициентами).
Помимо использования термохимических данных для решения проблем практического использования тепловой энергии, они широко применяются при теоретической оценке энергий химических связей.
Тепловой эффект реакции зависит от природы и состояния исходных веществ и конечных продуктов, но не зависит от пути реакции.
Закон лежит в основе термохимических расчетов. Рассмотрим реакцию сгорания метана:
Эту же реакцию можно провести через стадию образования СО:
Итак, видно, тепловой эффект реакции, протекающей по двум путям, одинаков.
При термохимических расчетах для определения тепловых эффектов применяют следствия из закона Гесса.
Второе начало термодинамики. Энтропия.
Состояние некоторого количества вещества можно охарактеризовать, указав, например, температуру, давление – это характеристики макросостояния или указать мгновенные характеристики каждой частицы вещества – ее положение в пространстве (xi, yi, zi) и скорости перемещения по всем направлениям (vx, vy, vz) – это характеристики микросостояния вещества. Так как вещество состоит из огромного числа частиц, то данному макросостоянию отвечает огромное число микросостояний.Число микросостояний, которое соответствует данному макросостоянию вещества, называется термодинамической вероятностью состояния системы – W.
Величина W есть число различных способов, посредством которых реализуется данное состояние вещества. Макросостояние тем вероятнее, чем большим числом микросостояний оно осуществляется. Так для системы из 10 молекул W близко к 10000. Оказалось удобнее и проще характеризовать состояние системы не самой вероятностью осуществления данного макросостояния, а величиной, пропорциональной ее логарифму.
Эта величина называется энтропией и обозначается буквой S.
Как показано Больцманом,
S – характеризует состояния системы и возможные изменения состояний, поэтому является функцией термодинамического состояния. Каждому состоянию системы соответствует определенное значение энтропии. Следовательно, вероятность различных состояний системы (газовое, жидкое, твердое) можно количественно выразить значением энтропии. Абсолютные значения энтропии можно определить экспериментально для простых и сложных веществ или взять из справочника термодинамических величин.
Величину S можно рассматривать как меру неупорядоченности состояния системы, то есть как количественную меру беспорядка.
