- •Предмет и задачи химии. Место химии в системе естественных наук. Химические дисциплины в системе медицинского образования
- •Взаимосвязь между процессами обмена веществ и энергии в организме
- •Химическая термодинамика как теоретическая основа биоэнергетики. Предмет и методы химической термодинамики
- •Термодинамические системы: изолированные, закрытые, открытые, гомогенные, гетерогенные. Понятие о фазе.
- •5.Первое начало термодинамики. Внутренняя энергия. Изобарный и изохорный тепловые эффекты.
- •6.Энтальпия . Закон Гесса. Термохимические уравнения.
- •Стандартные теплоты образования и сгорания. Термохимические расчеты и их использование для энергетической характеристики биохимических процессов
- •Второе начало термодинамики. Энтропия.
- •2 Закон термодинамики
- •10. Термодинамические условия равновесия. Критерии направления самопроизвольно протекающих процессов. Энтальпийный и энтропийный факторы.
- •11.Обратимые и необратимые в термодинамическом смысле процессы. Процессы жизнедеятельности как пример необратимых процессов.
- •12.Обратимые и необратимые по направлению реакции. Понятие о химическом равновесии.
- •13. Константа химического равновесия и способы ее выражения: Кс, Кр, Ка
- •14.Закон действующих масс. Прогнозирование смещения химического равновесия на основе принципа Ле-Шателье.
- •15.Понятие о термодинамике открытых систем. Стационарное состояние организма и его подсистем.
- •16.Роль растворов в процессах жизнедеятельности организмов. Вода как растворитель. Значение явления растворения в процессах метаболизма.
- •17.Растворимость газов в жидкостях и ее зависисмость от природы газа и растворителя, от температуры. Закон Генри. Закон Сеченова. Закон Дальтона.
- •18.Растворимость газов в крови. Кесонная болезнь.
- •19.Растворимость н.М.С. В жидкостях. Факторы, влияющие на растворимость. Н.М.С. В жидкостях. Закон распределения Нернста.
- •20.Способы выражения состава раствора. Закон эквивалентов.
14.Закон действующих масс. Прогнозирование смещения химического равновесия на основе принципа Ле-Шателье.
Зако́н де́йствующих масс устанавливает соотношение между массами реагирующих веществ в химических реакциях при равновесии, а также зависимость скорости химической реакции от концентрации исходных веществ.
скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ. Так, для реакции А + В = С имеем = k[A][B], где — скорость; k — коэффициент пропорциональности (константа скорости); [A] и [B] — концентрации веществ А и В. Если во взаимодействие вступают сразу несколько частиц какого-либо из веществ, то его концентрация должна быть возведена в степень с показателем, равным числу частиц, входящему в уравнение реакции. Например, выражение для скорости реакции по схеме: 2 Н2 + О2 = 2 Н2О будет: = k [H2]2[O2]. Близкие к закону действия масс идеи содержались уже в работах Бертолле. Он не смог их обобщить и правильно выразить, так как в то время неясна была разница между концентрацией и общим количеством вещества. Закон действия масс может быть выведен на основе следующего положения теории вероятностей: вероятность одновременного осуществления независимых событий равна произведению вероятностей каждого из них. Для того, чтобы произошло химическое взаимодействие, необходимо столкновение реагирующих молекул, т. е. одновременное нахождение их в данной точке пространства. Вероятность (w) такого нахождения для молекулы каждого из веществ прямо пропорциональна его концентрации, т. е. wA = a[A], wB = b[B] и т. д., где a и b — коэффициенты пропорциональности. Отсюда общее число столкновений за единицу времени u = wAwB = ab[A][B]... Но успешными, приводящими к химическому взаимодействию, будут не все такие столкновения, а лишь некоторая их доля (), величина которой при данных внешних условиях зависит только от природы реагирующих веществ. Поэтому скорость реакции = u = а[A]b[B]... Объединяя все константы в одну, получаем закон действия масс. Числовое значение константы скорости (k) выражает скорость реакции в тот момент, когда произведение концентраций реагирующих веществ равно единице.
В некоторых учебных пособиях формулировку принципа Ле Шателье упрощают: равновесная система, на которую оказывают воздействие, смещает равновесие так, чтобы уменьшить влияние этого воздействия. На самом деле не всякое воздействие может приводить к смещению равновесия, а только определяющее. Например, рассмотрим ту же реакцию между H2 и I2 . Давление в данной конкретной системе не является определяющим фактором, поскольку в прямой и обратной реакциях образуется одинаковое количество молекул газа. В итоге ни одна из реакций не получает преимущества при изменении концентраций газов и положение равновесия не меняется. Таким образом, для смещения равновесия надо изменять только те параметры, которые являются для данной реакции определяющими. В рассмотренном случае давление не является таким фактором.
15.Понятие о термодинамике открытых систем. Стационарное состояние организма и его подсистем.
Термодинамические открытые системы активно взаимодействуют с внешней средой, причем наблюдатель прослеживает это взаимодействие не полностью, оно характеризуется высокой неопределённостью. При определённых условиях такая открытая система может достигать стационарного состояния, в котором её структура или важнейшие структурные характеристики остаются постоянными, в то время как система осуществляет со средой обмен веществом, информацией или энергией — этот процесс называется гомеостазом. Открытые системы в процессе взаимодействия со средой могут достигать так называемого эквифинального состояния, то есть состояния, определяющегося лишь собственной структурой системы и не зависящего от начального состояния среды. Такие открытые системы могут сохранять высокий уровень организованности и развиваться в сторону увеличения порядка и сложности, что является одной из наиболее важных особенностей процессов самоорганизации.
Открытые системы имеют важное значение не только в физике, но и в общей теории систем, биологии, кибернетике,информатике, экономике. Биологические, социальные и экономические системы необходимо рассматривать как открытые, поскольку их связи со средой имеют первостепенное значение при их моделировании и описании.
Эти процессы и системы рассматриваются в неравновесной термодинамике. Аналогично тому как в равновесной термодинамике особым состоянием является состояние равновесия, так в неравновесной термодинамике особую роль играют стационарные состояния. Несмотря на то что в стационарном состоянии необходимые процессы, протекающие в системе (диффузия, теплопроводность и др.), увеличивают энтропию, энтропия системы не изменяет.Представим изменением энтропии DS системы в виде суммы двух слагаемых: DS =DSi + DSl,
где DSi – изменение энтропии, обусловленное необратимыми процессами в системе; DSl – изменение энтропии, вызванное взаимодействием системы с внешними телами (потоки, проходящие через систему). Необратимость процессов приводит к DSi > 0, стационарность состояния – к DSi = 0; следовательно: DSl = DS – DSi < 0. Это означает, что энтропия в продуктах (вещество и энергия), поступающих в систему, меньше энтропии в продуктах, выходящих из системы.
Начальное развитие термодинамики стимулировалось потребностями промышленного производства. На этом этапе (XIX в.) основные достижения заключались в формулировке законов, разработке методов циклов и термодинамических потенциалов применительно к идеализированным процессам.
Биологические объекты являются открытыми термодинамическими системами. Они обмениваются с окружающей средой энергией и веществом. Для организма – стационарной системы – можно записать dS = 0, S = = const, dS i> 0, dSe < 0. Это означает, что большая энтропия должна быть в продуктах выделения, а не в продуктах питания. При некоторых патологических состояниях энтропия биологической системы может возрастать (dS > 0), это связано с отсутствием стационарности, увеличением неупорядоченности. Формула может быть представлена:
или
для стационарного состояния
Из
этого видно, что при обычном состоянии
организма скорость изменения энтропии
за счет внутренних процессов равна
скорости изменения отрицательной
энтропии за счет обмена веществ и
энергией с окружающей средой.
