- •«Тюменский государственный нефтегазовый университет» Институт кибернетики, информатики и связи
- •Теория вероятностей и математическая статистика
- •Аннотация
- •С одержание
- •П ояснительная записка
- •Практическое занятие №1
- •Теоретический материал
- •Примеры
- •Задания для самостоятельной работы
- •Вопросы для самоконтроля:
- •Практическая работа №2
- •Теоретический материал
- •Примеры
- •Задания для самостоятельной работы
- •Вопросы для самоконтроля:
- •Практическое занятие №3
- •Теоретический материал
- •Примеры
- •Задания для самостоятельной работы
- •Вопросы для самоконтроля:
- •Практическое занятие №4
- •Теоретический материал
- •Примеры
- •Задания для самостоятельно работы
- •Вопросы для самоконтроля:
- •Практическое занятие №5
- •Теоретический материал
- •Примеры
- •Задания для самостоятельной работы
- •Вопросы для самоконтроля:
- •Практическое занятие №6
- •Теоретический материал
- •Примеры
- •Задания для самостоятельной работы
- •Вопросы для самоконтроля:
- •Практическое занятие №7
- •Теоретический материал
- •Примеры
- •Задания для самостоятельной работы
- •Практическое занятие №8
- •Теоретический материал
- •Задания для самостоятельной работы
- •Вопросы для самоконтроля:
- •Практическое занятие №9
- •Теоретический материал
- •Примеры
- •Задания для самостоятельной работы
- •Вопросы для самоконтроля:
- •Практическое занятие №10
- •Теоретический материал
- •Примеры
- •Задания для самостоятельной работы
- •Вопросы для самоконтроля:
- •Практическое занятие №11
- •Теоретический материал
- •Примеры
- •Задания для самостоятельной работы
- •Вопросы для самоконтроля
- •Практическое занятие №12
- •Теоретический материал
- •Примеры
- •Задания для самостоятельной работы
- •Вопросы для самопроверки:
- •Практическое занятие №13
- •Теоретический материал
- •Задания для самостоятельной работы
- •Вопросы для самоконтроля:
- •Практическая работа №14
- •Теоретический материал
- •Примеры
- •Задания для самостоятельной работы
- •Вопросы для самоконтроля:
- •Практическая работа №15
- •Теоретический материал
- •Задания для самостоятельно работы
- •Вопросы для самоконтроля
- •Практическое занятие №16
- •Теоретический материал
- •Задания для самостоятельной работы
- •Вопросы для самоконтроля:
- •Практическое занятие №17
- •Теоретический материал
- •Задания для самостоятельной работы
- •Вопросы для самоконтроля:
- •Список рекомендуемой литературы
- •Теория вероятностей и математическая статистика
- •Библиотечно-издательский комплекс
- •625000, Тюмень, ул. Володарского, 38. Типография библиотечно-издательского комплекса.
- •625039, Тюмень, ул. Киевская, 52.
Задания для самостоятельно работы
По данным корреляционной таблицы оценить тесноту линейной связи между признаками и и составить уравнения линейной регрессии по и и .
Вопросы для самоконтроля
Устройство корреляционной таблицы.
Пояснить на корреляционной таблице, как задается статистическая зависимость между признаками.
В каком случае статистическая зависимость является корреляционной?
Общие средние, их вычисления.
Среднее квадратическое отклонение, его смысл и вычисление.
Как оценить тесноту линейной связи?
Как находится корреляционный момент?
Дайте понятие коэффициента корреляции. Какие значения может принимать коэффициент корреляции?
Как по значению коэффициента корреляции делается вывод о виде и тесноте линейной связи?
Какой вид имеют уравнения регрессий Y по X и X по У.
Практическое занятие №16
Тема: Распознавание графов на изоморфности, эйлеровость и гамильтоновость
Цель: формирование навыков распознавания графов на изоморфность, эйлеровость и гамильтоновость
На выполнение работы отводится 1 час
Требования к выполнению практической работы:
1.Ответить на теоретические вопросы.
2.Оформить задания в тетради для практических работ.
Теоретический материал
Теория графов в последнее время широко используется в различных отраслях науки и техники, особенно в экономике и социологии.
Основы
теории графов разработал Леонард Эйлер,
решавший задачу о разработке замкнутого
маршрута движения по мостам в г.
Кенигсберге. При решении задачи он
обозначил каждую часть суши точкой, а
каждый мост – линией, их соединяющей.
В результате был получен граф (рис. 1).
Эйлер доказал, что такая задача решения не имеет. Быстрое развитие теория графов получила с созданием электронно – вычислительной техники, которая позволяла решить многие задачи алгоритмизации.
Пусть
на плоскости задано некоторое множество
вершин Х
и множество
соединяющих их дуг. Графом называется
бинарное отношение множества Х
и множества
:
,
или, иначе
.
Граф называется ориентированным, если указано направление дуг и неориентированным, если такое направление не указано. Примером неориентированного графа является карта дорог.
Петля – это ребро, у которого начальная и конечная вершины совпадают. Две вершины называются смежными, если существует соединяющая их дуга. Ребро называется инцидентным вершине, если оно выходит или входит в вершину.
Степенью (валентностью) вершины называется число инцидентных ей ребер. Кратностью пары вершин называется число соединяющих их ребер или дуг.
В изображении графа имеется относительно большая свобода в размещении вершин и выборе формы соединяющей их ребер. Поэтому один и тот же граф может быть представлен (на плоскости) по-разному.
Графы называются изоморфными, если между множествами их вершин существует взаимно однозначное соответствие, такое, что вершины соединены ребрами в одном из графов в том и только том случае, когда соответствующие им вершины соединены в другом графе. Если ребра графа ориентированы, то их направление в изоморфных графах также должно соответствовать друг другу.
В теории графов есть понятие обход графа. Это маршрут, содержащий все ребра или вершины графа и обладающий определенными свойствами. Наиболее известными обходами графа являются Эйлеровы и гамильтоновы цепи и циклы.
