- •3.Специфичность первичной структуры белка. Особенности образования пептидной связи. Определяющая роль первичной структуры в формировании более высоких уровней организации белковой молекулы.
- •7.Понятие нативный белок. Понятие об аллостерических белках.
- •8.Основные функции простых и сложных белков в организме: структурная, каталитическая, рецепторная, регуляторная, транспортная, защитная, сократительная и другие.
- •9.Содержание белков в тканях и органах. Размеры белковой молекулы. Методы определения молекулярной массы белка (гель-фильтрация, ультрацентрифугирование, диск-электрофорез).
- •10.Растворимость белка в воде. Зависимость растворимости от аминокислотного состава белков. Физико-химические свойства водных растворов белков. Понятие об изоэлектрической точке.
- •13. Сложные белки, их классификация. Металлопротеины и их функция в организме.
- •14. Гемоглобин а, структура и функция. Аллостерические формы гемоглобина. Гемоглобинопатии. Структура, функциональное сходство и различие молекул гемоглобина и миоглобина.
- •15. Основные белки иммунной системы. Антитела. Т-рецепторы и белки главного комплекса гистосовместимости.
- •16. Нуклеиновые кислоты: днк и рнк, первичная и вторичная структура. Видовая специфичность нуклеиновых кислот. Нуклеопротеины, структура и функции.
- •17. Химическая природа, структура и функции ферментов, характеристика кофакторов и коферментов, их роль в катализе.
- •18. Понятие об активных центрах ферментов. Аллостерический центр. Аллостерические ферменты.
- •19. Изоферменты. Мультимолекулярные ферментные системы. Единицы ферментативной активности.
- •20. Механизм действия ферментов.
- •21. Классификация ферментов. Примеры.
- •1. Оксидоредуктазы
- •2.Трансферазы
- •3.Гидролазы
- •4. Лиазы
- •5. Изомеразы
- •6. Лигазы (синтетазы)
- •22. Кинетика ферментативных реакций. Сродство между субстратом и ферментом. Понятие о константе Михаэлиса. Уравнение Михаэлиса-Ментен.
- •23. Регуляция активности ферментов. Активаторы и ингибиторы ферментов. Типы ингибирования ферментов: обратимое и необратимое; конкурентное и неконкурентное.
- •24. Влияние рН и температуры на скорость ферментативных реакций. Специфичность действия ферментов.
- •25. Значение ферментов в регуляции обмена веществ. Применение ферментов в медицине.
7.Понятие нативный белок. Понятие об аллостерических белках.
Нативный белок - белок, обладающий определенной биологической активностью.
8.Основные функции простых и сложных белков в организме: структурная, каталитическая, рецепторная, регуляторная, транспортная, защитная, сократительная и другие.
Структурная функция. В комплексе с липидами белки участвуют в образовании биомембран клеток. Структурные белки цитоскелета придают форму клеткам и многим органоидам. Примерами структурных белков являются коллаген в соединительной ткани, кератин в волосах, коже, ногтях.
Сократительная (двигательная) функция. Сократительную функцию выполняют мышечные белки (актин и миозин). Белки цитоскелета необходимы для расхождения хромосом в процессе митоза.
Питательная (резервная) функция. Овальбумины(белки яйца) - источники питания для плода. Казеин - белок молока - также выполняет питательную функцию.
Каталитическая функция. Большинство известных в настоящее время ферментов (биологических катализаторов) является белками.
Транспортная функция. Белок эритроцитов гемоглобин участвует в переносе кислорода и углекислого газа, выполняя дыхательную функцию. Альбумины сыворотки крови участвуют в транспорте липидов.
Защитная функция. В ответ на поступление в организм вирусов, бактерий, чужеродных белков, токсинов образуются защитные белки - антитела (иммунная защита). Специфические белки плазмы крови способны к свертыванию, что предохраняет от кровопотери при кровотечениях (физическая защита).
Рецепторная функция. Клеточные белки образуют специфические рецепторы и участвуют в передаче гормонального сигнала.
Гормональная функция. Группа гормонов являются белками или полипептидами, например, гормон гипофиза вазопрессин.
Другие важные функции белков - буферные свойства (обеспечение физиологического значенияе рН внутренней среды), поддержаниеь онкотического давлениея в клетках и крови, и др.
9.Содержание белков в тканях и органах. Размеры белковой молекулы. Методы определения молекулярной массы белка (гель-фильтрация, ультрацентрифугирование, диск-электрофорез).
В организме людей и животных содержание белка значительно выше, чем у растений. В мышцах, легких, селезенке, почках белками приходится более 70-80% сухой массы в печени - 57%, в мозге - 45%. Низкое содержание белка в кости и в зубах - 20 и 18%. Неодинаковое содержание белка и в разных субклеточных органеллах. Больше белка в гиалоплазме (внутриклеточный сок). Если принять общий белок клетки за 100%, то на гиалоплазму приходится 40%. Митохондрии и микросомы содержат по 20%, ядро - 12%, лизосомы - 2%, пероксисомы - 2,5%, плазматическая мембрана - 1,5% белка.
Содержание химических элементов в белке (в% от сухой массы): углерод - 51-55, кислород - 21-28; азот - 15-18; водород - 6-7; сера - 0,3-2,5.
В состав некоторых белков входят фосфор (0,2-2%), железо и другие элементы. Наиболее постоянным для белков животного, растительного и микробного происхождения содержание азота - в среднем 16%, на этой основе по содержанию азота рассчитывают количество белка: массу азота, установленную анализом, умножают на коэффициент 6,25 (100:16 = 6,25) .
Размер белковых молекул лежит в пределах 1 мкм до 1 нм
Гель-фильтрация, или метод молекулярных сит
Для разделения белков часто используют хроматографические методы, основанные на распределении веществ между двумя фазами, одна из которых подвижная, а другая неподвижная. В основу хроматографических методов положены разные принципы: гель-фильтрации, ионного обмена, адсорбции, биологического сродства.
Метод разделения белков с помощью гель-фильтрационной хроматографии основан на том, что вещества, отличающиеся молекулярной массой, по-разному распределяются между неподвижной и подвижной фазами. Хроматографическая колонка заполняется гранулами пористого вещества (сефадекс, агароза и др.). В структуре полисахарида образуются поперечные связи и формируются гранулы с "порами", через которые легко проходят вода и низкомолекулярные вещества. В зависимости от условий можно формировать гранулы с разной величиной "пор".
Неподвижная фаза - жидкость внутри гранул, в которую способны проникать низкомолекулярные вещества и белки с небольшой молекулярной массой. Смесь белков, нанесённую на хроматографическую колонку, вымывают (элюируют), пропуская через колонку растворитель. Вместе с фронтом растворителя движутся и самые крупные молекулы.
Более мелкие молекулы диффундируют внутрь гранул сефадекса и на некоторое время попадают в неподвижную фазу, в результате чего их движение задерживается. Величина пор определяет размер молекул, способных проникать внутрь гранул (рис. 1-55).
Так как гелевая структура сефадекса легко деформируется под давлением, гели стали заменять более жёсткими матрицами (сефактил, той-оперл), представляющими сферические гранулы с разными размерами пор. Выбор размеров пор в гранулах зависит от целей хроматографии (о других хроматографических методах будет сказано ниже).
Ультрацентрифугирование
Метод разделения также основан на различии в молекулярных массах белков. Скорость седиментации веществ в процессе вращения в ультрацентрифуге, где центробежное ускорение достигает 100 000-500 000 g, пропорционально их молекулярной массе. На поверхность буферного раствора, помещённого в кювету, наносят тонкий слой смеси белков. Кювету помещают в ротор ультрацентрифуги. При вращении ротора в течение 10-12 ч более крупные молекулы (с большей молекулярной массой) оседают в буферном растворе с большей скоростью. В результате в кювете происходит расслоение смеси белков на отдельные фракции с разной молекулярной массой (рис. 1-56). После расслоения белковых фракций дно кюветы прокаливают иглой и по каплям собирают содержимое небольшими порциями в пробирки.
Электрофорез белков
Метод основан на том, что при определённом значении рН и ионной силы раствора белки двигаются в электрическом поле со скоростью, пропорциональной их суммарному заряду. Белки, имеющие суммарный отрицательный заряд, двигаются к аноду (+), а положительно заряженные белки - к катоду (-).
Электрофорез проводят на различных носителях: бумаге, крахмальном геле, полиакриламидном геле и др. В отличие от электрофореза на бумаге, где скорость движения белков пропорциональна только их суммарному заряду, в полиакриламидном геле скорость движения белков пропорциональна их молекулярным массам.
Разрешающая способность электрофореза в полиакриламидном геле выше, чем на бумаге. Так, при электрофорезе белков сыворотки крови человека на бумаге обнаруживают только 5 главных фракций: альбумины, α1 глобулины, α2-глобулины, β-глобулины и γ-глобулины (рис. 1-57). Электрофорез тех же белков в полиакриламидном геле позволяет получить до 18 различных фракций. Для обнаружения белковых фракций полоски бумаги или столбики геля обрабатывают красителем (чаще всего бромфеноловым синим или амидовым чёрным). Окрашенный комплекс белков с красителем выявляет расположение различных фракций на носителе.
