Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
2 част.анал. геом..doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
3.07 Mб
Скачать

5. Приклади розв’язання задач.

Задача 1. Скласти рівняння поверхні, утвореної обертанням прямої навколо осі .

Розв’язання. Нехай точка належить поверхні обертання. Проведемо через цю точку площину, перпендикулярно до осі . Нехай вона перетинає вісь в деякій точці та задану пряму в точці . Оскільки площина перетинає поверхню обертання по колу, то , звідки або

.

Очевидно, що ця поверхня являє собою однопорожнинний гіперболоїд обертання з віссю та центром у точці ( ).

Задача 2. Скласти рівняння поверхні, утвореної рухом прямої, яка одночасно перетинає три задані мимобіжні прямі

та .

Розв’язання. Нехай точка належить шуканій поверхні, а пряма, що проходить через точку , перетинає задані прямі в точках та відповідно. Із колінеарності векторів та дістаємо рівності . Прирівнюючи координати, отримуємо систему рівнянь , , з якої потрібно виключити змінні параметри та . Послідовно знаходимо , звідки . Тепер із рівності дістаємо , або, остаточно, . Зауважимо, що отримане рівняння є рівнянням гіперболічного параболоїда. Його можна дістати із відомого нам рівняння , перейшовши до іншої системи координат, а саме до координатної системи, утвореної поворотом даної на кут навколо осі . Взаємно перпендикулярні прямолінійні твірні поверхні , які лежать у площині та задаються рівняннями , у цьому випадку займають положення нових координатних осей.

175