- •Глава 1
- •Основные понятия, история изучения,
- •Цели и задачи токсикологии
- •И экотоксикологии
- •Глава 2 элементы токсикометрии и критерии токсичности ядов
- •2.1. Токсикологический эксперимент и его подготовка
- •2.1.1. Условия проведения эксперимента
- •2.1.2. Способы введения токсикантов
- •2.1.3. Выбор и подготовка лабораторных животных к эксперименту
- •2.1.4. Условия содержания лабораторных животных
- •2.1.5. Маркировка животных
- •2.2. Экспериментальное определение параметров токсикометрии
- •2.2.1. Критерии токсикометрии
- •2.2.2. Планирование эксперимента
- •2.2.3. Методы расчета среднеэффективной дозы токсикантов
- •2.2.3.1. Метод беренса
- •2.1. Обработка материалов по установлению токсичности тубазида по методу Беренса
- •2.3. Основные типы классификаций вредных веществ (ядов) и отравлений
- •2.5. Классификация загрязняющих воду веществ по токсикологическим параметрам
- •2.6. Классификация загрязняющих воду химических веществ по их способности к материальной кумуляции
- •2.7. Классификация загрязняющих воду химических веществ по стабильности
- •2.3.1. Проявления действия яда
- •Глава 3 биохимические основы токсического действия химических веществ
- •3.1. Понятие о рецепторе
- •3.2. Взаимодействие токсических веществ с ферментами
- •Глава 4
- •Поступление, транспорт, распределение,
- •Превращение и выделение ядов
- •Из организма
- •4.1. Поступление ядов в организм
- •4.2. Транспорт ксенобиотиков в организме
- •4.3. Распределение и депонирование ксенобиотиков
- •4.4. Превращение и обезвреживание ядовитых соединений
- •4.5. Связывание, транспорт и выведение ксенобиотиков
- •4.6. Выделение из организма
- •4.7. Токсикокинетика
- •4.8. Лечебно-профилактическое питание
- •Глава 5 накопление и комбинированное действие ядов
- •5.1. Кумуляция ядов
- •5.1. Классификация кумулятивного действия ксенобиотиков
- •5.2. Комбинированное действие ядов
- •Глава 6 основные токсиканты в природных средах и сельскохозяйственной продукции
- •6.1. Источники загрязняющих веществ, их состав и пути распространения
- •6.1. Объемы выбросов загрязняющих веществ в атмосферу и сбросов загрязненных сточных вод в поверхностные водные объекты в Российской Федерации в 1995 г.
- •6.2. Газообразные неорганические соединения и кислоты
- •3. Чувствительность древесных пород, декоративных и культурных растений к длительному загрязнению воздуха (по Dassler, 1981)*
- •6.3. Тяжелые металлы
- •6.4. Основные биогеохимические свойства тяжелых металлов
- •6.3.1. Свинец
- •6.3.2. Кадмий
- •6.3.3. Ртуть
- •6.3.4. Мышьяк
- •6.3.5. Медь
- •6.3.6. Цинк
- •6.3.7. Олово
- •6.3.8. Железо
- •6.3.9. Стронций, сурьма, селен
- •6.3.10. Никель
- •6.3.11. Хром
- •6.3.12. Алюминий
- •6.3.13. Технология переработки пищевого сырья с повышенным содержанием тяжелых металлов
- •6.4. Радионуклиды
- •6.4.1. Основные представления о радиоактивности и ионизирующих излучениях
- •6.4.2. Источники и пути поступления радионуклидов в организм
- •6.4.3. Устойчивость живых организмов к воздействию радиации
- •6.4.4. Биологическое действие ионизирующих излучений на организм человека
- •6.4.5. Технологические способы снижения содержания радионуклидов в пищевой продукции
- •6.5. Полиароматические углеводороды и диоксины
- •6.5. Относительная канцерогенность различных пау
- •6.5.2. Диоксины и соединения
6.3.11. Хром
Хром (Сг) широко распространен в земной коре, он составляет 0,04 % твердой породы. Хром в основном применяется в металлургической промышленности для получения нержавеющих сталей и для покрытия металлических изделий, в частности металлических консервных банок, для защиты их от коррозии. Феррохром и хром используют в промышленности в качестве легирующих добавок, для получения красок и в полиграфической промышленности. Дубление соединениями хрома - традиционный способ изготовления кожаных изделий. Хроматы добавляют в качестве антикоррозионных агентов в воду, а присутствие их в сточных водах приводит к значительному выделению промышленных хроматов в окружающую среду.
Хром в небольших количествах находится в большинстве пищевых продуктов и напитков. Среднее суточное потребление хрома с пищей составляет приблизительно 50—80мкг. Содержание хрома в продуктах питания, производимых в США, колеблется от 0,175 до 0,470 мг/кг. Потенциальным источником повышения концентрации хрома в пищевых продуктах является загрязнение окружающей среды сточными водами.
По биологическому действию на организм хром является необходимым элементом. Основная его роль заключается в поддержании нормального уровня глюкозы в организме. Недостаток металла в организме приводит к нарушению углеводного и липидного обмена и может привести к диабету и атеросклерозу. Хорошо известны также острые и хронические заболевания, вызванные воздействием на организм избыточного содержания хрома и его соединений. Рабочие кожевенных заводов страдают хронической язвой, возникающей под действием соединений хрома (VI). У людей, работающих с хромом и его соединениями, встречаются аллергическая экзема и другие формы дерматита, а также рак верхних дыхательных путей и легких. Наиболее распространенными признаками хронической интоксикации хромом являются поражения слизистой оболочки носа и носовой перегородки, верхних дыхательных путей, кожи, глаз. Нет достаточных доказательств, что хром, обычно попадающий в пищу из исходного сырья или из хромированной посуды при приготовлении, отрицательно влияет на здоровье человека. Однако введение в организм больших количеств дихромата калия приводит к смертельным отравлениям. Летальной для человека является концентрация 3—8 г/сут, токсичной — 200 мг/сут. Меньшие количества хрома вызывают повреждения почек и печени. Поэтому эксперты ФАО/ВОЗ регламентируют содержание хрома в пищевых продуктах. Согласно СанПиН 2.3.2.1078—01 ПДК хрома в консервной продукции, расфасованной в хромированную металлическую тару, составляет 0,5 мг/кг продукции. ПДК металлического феррохрома в воздухе — 2 мг/м-*, триоксида и хлорида хрома — 0,01 мг/м3.
6.3.12. Алюминий
Алюминий (Al) — наиболее распространенный металл, плотностью 2,7 г/см3, на его долю приходится 8,8 % массы земной коры. Содержание алюминия в живом веществе в естественных условиях составляет в среднем 5 • Ю~3 %. Однако в живых организмах Al не выполняет какой-либо физиологической функции, отличается крайне низкой биофильностью (0,0006), относится к слабовыраженным и инертным элементам. Больше всего Al в бактериях (200 мг/кг сухого вещества), наземных растениях (4 г/кг). Среди пищевых продуктов наиболее высокая концентрация алюминия отмечена в чае (до 20 мг/г).
У растений алюминий вызывает задержку роста, отмирание черешков листьев, развитие темно-зеленой окраски листьев, пурпурной окраски стеблей, коралловидных и уродливых корневых систем. В водоемах под влиянием кислотных дождей, растворяющих природные малорастворимые алюмосиликатные породы, повышается концентрация катионов алюминия, что приводит к гибели рыб, земноводных, моллюсков. У человека Al сравнительно легко выводится из организма. Его накопление и проявление токсичности наблюдаются при нарушении функции почек, что приводит к увеличению хрупкости костей, развитию анемии, нарушению речи, ориентации, провалам памяти, помутнению рассудка.
Доза алюминия 1,3—6,2 г/сут смертельна для человека. В России и странах СНГ временные нормативные содержания алюминия в пищевых продуктах следующие, мг/кг: в молочных продуктах— 1, в мясе, соках, напитках— 10, в хлебопродуктах, фруктах — 20, в овощах — 30.
