- •Введение
- •Требования к физическому опыту
- •Ошибки измерений
- •Графическое изображение результатов измерений
- •Лабораторная работа № 1 Электроизмерительные приборы
- •Краткая теория
- •Чувствительность и цена деления электроизмерительного прибора
- •Погрешности приборов
- •Классификация приборов по принципу действия
- •Многопредельные приборы
- •Измерение сопротивления
- •Порядок выполнения работы
- •Контрольные вопросы
- •Литература
- •Лабораторная работа № 2 Изучение электростатического поля
- •Краткая теория
- •Порядок выполнения работы
- •Контрольные вопросы
- •Литература
- •Лабораторная работа № 3 Изучение электронного осциллографа
- •Краткая теория
- •Порядок выполнения работы
- •Контрольные вопросы
- •Литература
- •Лабораторная работа № 4 Исследование температурной зависимости сопротивления металла и полупроводника
- •Краткая теория
- •Вывод законов Ома и Джоуля-Ленца в классической электронной теории
- •Постановка задачи
- •Порядок выполнения работы
- •Контрольные вопросы
- •Литература
- •Лабораторная работа № 5 Определение отношения заряда электрона к его массе методом магнетрона
- •Краткая теория
- •Метод измерения
- •Порядок выполнения работы
- •Контрольные вопросы
- •Литература
- •Лабораторная работа № 6 Определение работы выхода электронов из металла
- •Краткая теория
- •Метод измерения
- •Порядок выполнения работы
- •Контрольные вопросы
- •Литература
- •Лабораторная работа № 7 Изучение процессов заряда и разряда конденсатора
- •Описание установки
- •Порядок выполнения работы
- •Контрольные вопросы
- •Литература
- •Лабораторная работа № 8 Изучение явления взаимной индукции
- •Краткая теория
- •Метод измерений
- •Порядок выполнения работы
- •Контрольные вопросы
- •Литература
- •Лабораторная работа № 9 Изучение релаксационных колебаний
- •Краткая теория
- •Самостоятельный электрический разряд в неоновой лампе
- •Выполнение работы
- •Контрольные вопросы
- •Литература
- •Лабораторная работа № 10 Исследование затухающих колебаний в колебательном контуре
- •Краткая теория
- •Экспериментальная часть
- •Контрольные вопросы
- •Литература
- •Лабораторная работа № 11 Изучение магнитного поля соленоида с помощью датчика Холла
- •Краткая теория
- •Метод измерений
- •Порядок выполнения работы
- •Контрольные вопросы
- •Литература
- •Лабораторная работа № 12 Изучение гистерезиса ферромагнитных материалов осциллографическим методом
- •Краткая теория
- •Ферромагнетики
- •Порядок выполнения работы
- •Контрольные вопросы
- •Литература
- •Лабораторная работа № 13 Изучение электрических колебаний в связанных контурах
- •Краткая теория
- •Порядок выполнения работы
- •Контрольные вопросы
- •Литература
- •Лабораторная работа № 14 Определение горизонтальной составляющей индукции магнитного поля Земли. Определение электродинамической постоянной.
- •Краткая теория
- •Порядок выполнения работы
- •Определение электродинамической постоянной
- •Выполнение работы
- •Контрольные вопросы
- •Литература
- •Содержание
Ферромагнетики
Свойства ферромагнитных веществ существенно отличаются от рассмотренных выше свойств диа – и парамагнетиков:
1) магнитная проницаемость μ достигает больших значений порядка 102 – 106;
2) намагниченность ферромагнетиков J имеет нелинейную зависимость от H;
3
) наличие
магнитного гистерезиса – явления
запаздывания изменения B
в ферромагнетике по отношению к изменению
H;
4) способность сохранять намагниченность даже в отсутствие внешнего магнитного поля.
К ферромагнетикам принадлежат железо (наиболее распространенный представитель – отсюда и общее название), никель, кобальт, гадолиний, их сплавы и соединения марганца и хрома с неферромагнитными материалами (MnAlCu, CrFe и др.)
Свойства ферромагнетиков заключаются в особенностях их кристаллической структуры. Ферромагнетик обладает отдельными микроскопическими (линейные размеры ~ 10-6 ÷ 10-4 м) областями (доменами), которые намагничены до насыщения даже в отсутствие внешнего поля. Однако магнитные моменты всех этих доменов ориентированы хаотически, поэтому суммарный магнитный момент макроскопического объема равен нулю.
При внесении ферромагнетика во внешнее магнитное поле ориентируются магнитные моменты не отдельных атомов (как в случае парамагнетиков), а целых областей – доменов. Процесс намагничивания делится на три стадии. В начальный момент происходит смещение границ доменов (рис. 3), при этом увеличиваются размеры тех из них, магнитные моменты которых совпадают с направлением внешнего поля. Если на этой стадии внешнее поле выключить, то ферромагнетик вернется в исходное состояние. Таким образом, процесс намагничивания на первой стадии является обратимым.
Процесс смещения границы доменов продолжается по мере увеличения внешнего магнитного поля. Наступает вторая стадия намагничивания. Особенностью этой стадии является необратимость намагничивания, т.е. размеры доменов не возвращаются в исходное состояние, даже при выключении внешнего поля.
Третья стадия наступает при больших значениях напряженности внешнего поля. В этом случае осуществляется процесс вращения магнитных моментов доменов вдоль вектора Н. Завершением этой стадии является насыщение намагниченности, которая наступает при одинаковой ориентации магнитных моментов всех без исключения доменов.
Магнитная проницаемость μ так же является нелинейной функцией от Н, что является следствием зависимости J (H). Действительно из выражения (2) следует:
. (9)
К
огда
намагниченность достигает насыщения
Jнас,
а напряженность растет, значение μ
стремится к единице. График зависимости
μ (H)
показан на рис. 5.
Магнитным гистерезисом называется явление запаздывания изменения магнитной индукции В в ферромагнетике по отношению к изменению напряженности Н внешнего поля. В этом запаздывании проявляется зависимость намагниченности от предшествующего его состояния. Петлей гистерезиса (рис. 6) называется кривая изменения магнитной индукции ферромагнетика, помещенного во внешнее магнитное поле, изменяющееся от + Н до – Н и обратно.
При изменении Н от нуля в сторону положительных значений индукция В возрастает, причем кривая сменяется прямолинейным участком после достижения насыщения (см. рис. 2). При уменьшении Н до 0 магнитная индукция запаздывает в уменьшении и при Н = 0 оказывается равной Вост (остаточное намагничивание). Для полного размагничивания образца нужно приложить магнитное поле противоположного направления Нк, называемое коэрцитивной силой (задерживающей напряженностью).
Перемагничивание образца сопровождается потерями энергии магнитного поля, которая затрачивается на переориентировку доменов. Объемная плотность энергии магнитного поля определяется соотношением
.
(10)
Изменение энергии при небольшом намагничивании будет:
. (11)
Таким образом, работа магнитного поля за цикл перемагничивания единицы объема ферромагнетика будет равна:
d w =
H dB,
(12)
т.е. пропорциональна площади петли гистерезиса. Ясно, что потери внешнего магнитного поля переходят во внутреннюю энергию образца и, в конечном счете, приводят к его нагреванию.
По величинам Нк и q ферромагнетики подразделяются на мягкие (Нк < 100 А/м, малая площадь q) и жесткие (Нк > 100 А/м, площадь q большая). Магнитожесткие материалы используются для создания постоянных магнитов, а магнитомягкие применяются при изготовлении сердечников трансформаторов.
Поскольку разница в энергиях между намагниченным и ненамагниченным состояниями составляет лишь несколько десятых электронвольт, то повышение температуры образца (энергия теплового движения ~ k T) может уничтожить намагничивание доменов. При температуре, называемой точкой Кюри, намагниченность доменов исчезает, и ферромагнетик превращается в парамагнетик. Температура Кюри для различных веществ имеет строго определенные значения. Например, для железа 770°C, кобальта 1127°C, никеля 358°C, гадолиния 16°C.
Теория ферромагнетизма была создана Я.И.Френкелем и В. Гейзенбергом в 1928 г. Из опытов по изучению магнитомеханических явлений следует, что ответственным за магнитные свойства ферромагнетиков являются собственные (спиновые) магнитные моменты электронов. При определенных условиях в кристаллах могут возникать силы, которые заставляют магнитные моменты электронов выстраиваться параллельно друг другу. В результате возникают области спонтанного (самопроизвольного) намагничивания, т.е. домены.
