- •Оглавление
- •Тема 1.3. Пара сил и момент силы относительно точки 35
- •Тема 1.4. Плоская система произвольно расположенных сил 42
- •Тема 1.4. Балочные системы. Определение реакций опор и моментов защемления 48
- •Тема 1.5. Пространственная система сил 67
- •Тема 1.6. Центр тяжести 75
- •Тема 1.7. Основные понятия кинематики. Кинематика точки 94
- •Тема 1.8. Кинематика точки 97
- •Тема 1.9. Простейшие движения твердого тела 107
- •Раздел I. Теоретическая механика Введение
- •Лекция 1 Тема 1.1. Основные понятия и аксиомы статики Понятие о силе и системе сил
- •Задачи теоретической механики
- •Аксиомы статики
- •Связи и реакции связей
- •Шарнирная опора
- •Примеры решения задач
- •Решение
- •Решение
- •Решение
- •Решение
- •Контрольные вопросы и задания
- •Лекция 2 Тема 1.2. Плоская система сходящихся сил. Определение равнодействующей геометрическим способом
- •П лоская система сходящихся сил
- •Решение задач на равновесие геометрическим способом
- •Р ешение
- •Р ешение
- •Контрольные вопросы и задания
- •Лекция 3 Тема 1.2. Плоская система сходящихся сил. Определение равнодействующей аналитическим способом
- •Проекция силы на ось
- •Определение равнодействующей системы сил аналитическим способом
- •Условия равновесия плоской системы сходящихся сил в аналитической форме
- •Примеры решения задач
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Р ешение
- •Решение
- •Решение
- •Контрольные вопросы и задания
- •Тема 1.2. Статика. Проекции силы на ось
- •Практическое занятие №1. Плоская система сходящихся сил
- •Расчетные формулы
- •Решение
- •Решение
- •Момент силы относительно точки
- •Примеры решения задач
- •Решение
- •Решение
- •Решение
- •Р ешение
- •Решение
- •Р ешение
- •Решение
- •Контрольные вопросы и задания
- •Влияние точки приведения
- •Частные случаи приведения системы сил к точке
- •Условие равновесия произвольной плоской системы сил
- •Примеры решения задач
- •Контрольные вопросы и задания
- •Лекция 6 Тема 1.4. Балочные системы. Определение реакций опор и моментов защемления
- •Виды нагрузок и разновидности опор Виды нагрузок
- •Примеры решения задач
- •Р ешение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Контрольные вопросы и задания
- •Практическое занятие №2. Плоская система произвольно расположенных сил
- •Основные формулы и предпосылки расчета
- •Упражнения при подготовке к самостоятельной работе
- •Задание 1. Определить величины реакций в опоре защемленной балки. Провести проверку правильности решения.
- •Задание 1. Определить величины реакций в заделке. Провести проверку правильности решения.
- •Задание 2. Определить величины реакций в шарнирных опорах балки. Провести проверку правильности решения.
- •Тема 1.4. Статика. Произвольная плоская система сил
- •Пространственная сходящаяся система сил
- •Произвольная пространственная система сил
- •Примеры решения задач
- •Решение
- •Решение
- •Решение
- •Решение
- •Контрольные вопросы и задания
- •Тема 1.5. Статика. Пространственная система сил
- •Лекция 8 Тема 1.6. Центр тяжести
- •Теорема Вариньона
- •Решение
- •Центр параллельных сил
- •Сила тяжести
- •Точка приложения силы тяжести
- •Решение
- •Определение координат центра тяжести плоских фигур
- •Примеры решения задач
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Контрольные вопросы и задания
- •Практическое занятие 3. Центр тяжести.
- •Тема 1.6. Центр тяжести
- •Основные формулы и предпосылки расчета
- •Упражнения при подготовке к самостоятельной работе
- •Расчетно-графическая работа №4. Определение центра тяжести фигур.
- •Тема 1.6. Статика. Центр тяжести тела
- •Задание для самостоятельной работы 3.
- •Лекция 9 Тема 1.7. Основные понятия кинематики. Кинематика точки
- •Основные кинематические параметры
- •Примеры решения задач
- •Решение
- •Решение
- •Решение
- •Решение
- •Контрольные вопросы и задания
- •Лекция 10 Тема 1.8. Кинематика точки
- •Анализ видов и кинетических параметров движений
- •Кинематические графики
- •Примеры решения задач
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Контрольные вопросы и задания
- •Тема 1.5. Пространственная система сил 67
- •Темы 1.7, 1.8. Кинематика. Кинематика точки. Лекция 11 Тема 1.9. Простейшие движения твердого тела
- •Поступательное движение
- •Вращательное движение
- •Частные случаи вращательного движения
- •Скорости и ускорения точек вращающегося тела
- •Примеры решения задач
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Контрольные вопросы и задания
- •Практическое занятие №4. Кинематика точки. Простейшие движения твердого тела
- •Расчетные формулы для определения параметров поступательного движения тела
- •Расчетные формулы для определения параметров вращательного движения
- •Рекомендации для решения задач расчетно-графической работы
- •Расчетно-графическая работа №5. Определение параметров вращательного движения.
- •Тема 1.9. Кинематика. Простейшие движения твердого тела
- •Лекция 12 Тема 1.10. Сложное движение точки. Сложное движение твердого тела
- •Основные определения
- •Плоскопараллельное движение твердого тела
- •Метод разложения сложного движения на поступательное и вращательное
- •Метод определения мгновенного центра скоростей
- •Примеры решения задач
- •Решение
- •Решение
- •Плоскопараллельное движение тела
- •Решение
- •Решение
- •Р ешение
- •Решение
- •Контрольные вопросы и задания
- •Т емы 1.10, 1.11. Кинематика. Сложное движение точки. Сложное движение твердого тела лекция 13 Тема 1.12. Основные понятия и аксиомы динамики. Понятие о трении
- •Содержание и задачи динамики
- •Аксиомы динамики
- •Понятие о трении. Виды трения
- •Примеры решения задач
- •Решение
- •Р ешение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Контрольные вопросы и задания
- •Лекция 14 Тема 1.13. Движение материальной точки. Метод кинетостатики
- •Свободная и несвободная точки
- •Сила инерции
- •Принцип кинетостатики (принцип Даламбера)
- •Примеры решений задач
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Контрольные вопросы и задания
- •Темы 1.12, 1.13. Динамика. Движение материальной точки. Метод кинетостатики.
- •Лекция 15 Тема 1.14. Работа и мощность
- •Примеры решения задач
- •Решение
- •Решение
- •Решение
- •Решение
- •Р ешение
- •Коэффициент полезного действия
- •Примеры решения задач
- •Решение
- •Решение
- •Решение
- •Решение
- •Контрольные вопросы и задания
- •Тема 1.14. Динамика. Работа и мощность
- •Лекция 17 Тема 1.15. Общие теоремы динамики
- •Теорема об изменении количества движения
- •Теорема об изменении кинетической энергии
- •Основы динамики системы материальных точек
- •Примеры решения задач
- •Решение
- •Решение
- •Решение
- •Решение
- •Р ешение
- •Решение
- •Решение
- •Решение
- •Контрольные вопросы и задания
- •Расчетно-графическая работа №6. Работа и мощность. Общие теоремы динамики
- •Расчетные формулы
- •Темы 1.14 и 1.15. Динамика. Работа и мощность. Общие теоремы динамики
Решение
Движение точки А вместе с кривошипом считаем сложным; оно получается в результате сложения:
а) движения точки А вместе с кулисой в ее возвратно-поступательном движении вдоль оси х (переносном движении);
б) движения точки А вместе с кулисным камнем, движущимся возвратно-поступательно в прорези кулисы в направлении, перпендикулярном оси х (относительном движении).
На рис. 1.49, б представлено графическое решение задачи.
Как видно из рис 1.49, б,
Пример 5. Автомобиль движется по прямолинейному пути с ускорением а = 4 м/с2. На продольном валу насажен вращающийся маховичок радиусом г = 0,25 м (рис. 1.50, а), имеющий в данный момент угловую скорость ω = 4 рад/с и угловое ускорение ε = 8 рад/с2. Найти абсолютное ускорение точек обода маховичка в данный момент (рис. 1.50, б).
Решение
Относительно поверхности земли точки обода маховичка совершают сложное движение. За переносное движение принимаем движение автомобиля, за относительное — вращательное движение маховичка относительно неподвижной оси
Очевидно, что
В относительном движении точка движется по окружности г = 0,25 м и ее ускорение вычисляется по формуле
На рис. 1.50, б показаны составляющие ускорения точки обода маховичка в относительном движении, а также вектор а,
Так как а, и ае взаимно перпендикулярны, то
Вектор а показан на рис. 1.50, б.
Плоскопараллельное движение тела
Пример 6. Зубчатое колесо зажато между двумя параллельными зубчатыми рейками (рис. 1.51, а). Нижняя рейка неподвижна, верхняя — движется со скоростью v = 4 м/с. Определить скорость точки В.
Решение
К
олесо
совершает плоскопараллельное движение.
Как известно, плоскопараллельное
движение можно представить как сумму
двух движении: поступательного вместе
с осью О и вращательного вокруг той
же оси.
Тогда скорость точки В можно рассматривать как геометрическую сумму скоростей в поступательном (переносном) и во вращательном (относительном) движениях (рис. 1.51, б):
где
Как известно, угловая скорость относительного вращательного движения не зависит от выбора полюса, поэтому, приняв за полюс точку Р (рис. 1.51, б), найдем
С
корость
точки А — общей точки колеса и рейки vA
= 4 м/с. Очевидно,
Модуль скорости точки В
Решим пример другим способом. Движение колеса можно рассматривать в любой момент времени как вращательное вокруг мгновенного центра вращения. В рассматриваемом примере мгновенный центр вращения колеса — точки касания колеса с неподвижной рейкой (точка Р).
Скорость точки А можно определить как скорость во вращательном движении вокруг точки Р:
откуда
т. е.
Тогда
П
ример
7. Цилиндр с выступающим ободом катится
без скольжения по горизонтальной
поверхности (рис. 1.52). При этом центр
цилиндра — точка О движется прямолинейно
от начального положения Ох согласно
уравнению s = 0,75t3
(s — в метрах, t
— в секундах). Определить скорости
точек В и С цилиндра, а также точек
А, Е, F и Н,
лежащих на ободе цилиндра в момент
времени t =
2 с. Диаметр цилиндра d
= 1 м, обода D = 1,8 м.
