- •Оглавление
- •Тема 1.3. Пара сил и момент силы относительно точки 35
- •Тема 1.4. Плоская система произвольно расположенных сил 42
- •Тема 1.4. Балочные системы. Определение реакций опор и моментов защемления 48
- •Тема 1.5. Пространственная система сил 67
- •Тема 1.6. Центр тяжести 75
- •Тема 1.7. Основные понятия кинематики. Кинематика точки 94
- •Тема 1.8. Кинематика точки 97
- •Тема 1.9. Простейшие движения твердого тела 107
- •Раздел I. Теоретическая механика Введение
- •Лекция 1 Тема 1.1. Основные понятия и аксиомы статики Понятие о силе и системе сил
- •Задачи теоретической механики
- •Аксиомы статики
- •Связи и реакции связей
- •Шарнирная опора
- •Примеры решения задач
- •Решение
- •Решение
- •Решение
- •Решение
- •Контрольные вопросы и задания
- •Лекция 2 Тема 1.2. Плоская система сходящихся сил. Определение равнодействующей геометрическим способом
- •П лоская система сходящихся сил
- •Решение задач на равновесие геометрическим способом
- •Р ешение
- •Р ешение
- •Контрольные вопросы и задания
- •Лекция 3 Тема 1.2. Плоская система сходящихся сил. Определение равнодействующей аналитическим способом
- •Проекция силы на ось
- •Определение равнодействующей системы сил аналитическим способом
- •Условия равновесия плоской системы сходящихся сил в аналитической форме
- •Примеры решения задач
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Р ешение
- •Решение
- •Решение
- •Контрольные вопросы и задания
- •Тема 1.2. Статика. Проекции силы на ось
- •Практическое занятие №1. Плоская система сходящихся сил
- •Расчетные формулы
- •Решение
- •Решение
- •Момент силы относительно точки
- •Примеры решения задач
- •Решение
- •Решение
- •Решение
- •Р ешение
- •Решение
- •Р ешение
- •Решение
- •Контрольные вопросы и задания
- •Влияние точки приведения
- •Частные случаи приведения системы сил к точке
- •Условие равновесия произвольной плоской системы сил
- •Примеры решения задач
- •Контрольные вопросы и задания
- •Лекция 6 Тема 1.4. Балочные системы. Определение реакций опор и моментов защемления
- •Виды нагрузок и разновидности опор Виды нагрузок
- •Примеры решения задач
- •Р ешение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Контрольные вопросы и задания
- •Практическое занятие №2. Плоская система произвольно расположенных сил
- •Основные формулы и предпосылки расчета
- •Упражнения при подготовке к самостоятельной работе
- •Задание 1. Определить величины реакций в опоре защемленной балки. Провести проверку правильности решения.
- •Задание 1. Определить величины реакций в заделке. Провести проверку правильности решения.
- •Задание 2. Определить величины реакций в шарнирных опорах балки. Провести проверку правильности решения.
- •Тема 1.4. Статика. Произвольная плоская система сил
- •Пространственная сходящаяся система сил
- •Произвольная пространственная система сил
- •Примеры решения задач
- •Решение
- •Решение
- •Решение
- •Решение
- •Контрольные вопросы и задания
- •Тема 1.5. Статика. Пространственная система сил
- •Лекция 8 Тема 1.6. Центр тяжести
- •Теорема Вариньона
- •Решение
- •Центр параллельных сил
- •Сила тяжести
- •Точка приложения силы тяжести
- •Решение
- •Определение координат центра тяжести плоских фигур
- •Примеры решения задач
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Контрольные вопросы и задания
- •Практическое занятие 3. Центр тяжести.
- •Тема 1.6. Центр тяжести
- •Основные формулы и предпосылки расчета
- •Упражнения при подготовке к самостоятельной работе
- •Расчетно-графическая работа №4. Определение центра тяжести фигур.
- •Тема 1.6. Статика. Центр тяжести тела
- •Задание для самостоятельной работы 3.
- •Лекция 9 Тема 1.7. Основные понятия кинематики. Кинематика точки
- •Основные кинематические параметры
- •Примеры решения задач
- •Решение
- •Решение
- •Решение
- •Решение
- •Контрольные вопросы и задания
- •Лекция 10 Тема 1.8. Кинематика точки
- •Анализ видов и кинетических параметров движений
- •Кинематические графики
- •Примеры решения задач
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Контрольные вопросы и задания
- •Тема 1.5. Пространственная система сил 67
- •Темы 1.7, 1.8. Кинематика. Кинематика точки. Лекция 11 Тема 1.9. Простейшие движения твердого тела
- •Поступательное движение
- •Вращательное движение
- •Частные случаи вращательного движения
- •Скорости и ускорения точек вращающегося тела
- •Примеры решения задач
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Контрольные вопросы и задания
- •Практическое занятие №4. Кинематика точки. Простейшие движения твердого тела
- •Расчетные формулы для определения параметров поступательного движения тела
- •Расчетные формулы для определения параметров вращательного движения
- •Рекомендации для решения задач расчетно-графической работы
- •Расчетно-графическая работа №5. Определение параметров вращательного движения.
- •Тема 1.9. Кинематика. Простейшие движения твердого тела
- •Лекция 12 Тема 1.10. Сложное движение точки. Сложное движение твердого тела
- •Основные определения
- •Плоскопараллельное движение твердого тела
- •Метод разложения сложного движения на поступательное и вращательное
- •Метод определения мгновенного центра скоростей
- •Примеры решения задач
- •Решение
- •Решение
- •Плоскопараллельное движение тела
- •Решение
- •Решение
- •Р ешение
- •Решение
- •Контрольные вопросы и задания
- •Т емы 1.10, 1.11. Кинематика. Сложное движение точки. Сложное движение твердого тела лекция 13 Тема 1.12. Основные понятия и аксиомы динамики. Понятие о трении
- •Содержание и задачи динамики
- •Аксиомы динамики
- •Понятие о трении. Виды трения
- •Примеры решения задач
- •Решение
- •Р ешение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Контрольные вопросы и задания
- •Лекция 14 Тема 1.13. Движение материальной точки. Метод кинетостатики
- •Свободная и несвободная точки
- •Сила инерции
- •Принцип кинетостатики (принцип Даламбера)
- •Примеры решений задач
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Контрольные вопросы и задания
- •Темы 1.12, 1.13. Динамика. Движение материальной точки. Метод кинетостатики.
- •Лекция 15 Тема 1.14. Работа и мощность
- •Примеры решения задач
- •Решение
- •Решение
- •Решение
- •Решение
- •Р ешение
- •Коэффициент полезного действия
- •Примеры решения задач
- •Решение
- •Решение
- •Решение
- •Решение
- •Контрольные вопросы и задания
- •Тема 1.14. Динамика. Работа и мощность
- •Лекция 17 Тема 1.15. Общие теоремы динамики
- •Теорема об изменении количества движения
- •Теорема об изменении кинетической энергии
- •Основы динамики системы материальных точек
- •Примеры решения задач
- •Решение
- •Решение
- •Решение
- •Решение
- •Р ешение
- •Решение
- •Решение
- •Решение
- •Контрольные вопросы и задания
- •Расчетно-графическая работа №6. Работа и мощность. Общие теоремы динамики
- •Расчетные формулы
- •Темы 1.14 и 1.15. Динамика. Работа и мощность. Общие теоремы динамики
Решение
1. Рассмотрим участок АВ. Касательное ускорение равно нулю (v = const).
Нормальное ускорение (ап = v2/r) при переходе через точку В увеличивается в 2 раза, оно меняет направление, т. к. центр дуги АВ не совпадает с центром дуги ВС.
2. На участке ВС:
касательное ускорение равно нулю: at = 0;
нормальное ускорение при переходе через точку С меняется: до точки С движение вращательное, после точки С движение становится прямолинейным, нормальное напряжение на прямолинейном участке равно нулю.
3. На участке CD полное ускорение равно нулю.
Пример 3. По заданному графику скорости найти путь, пройденный за время движения (рис. 10.6).
Решение
По графику следует рассмотреть три участка движения. Первый участок — разгон из состояния покоя (равноускоренное движение).
Второй участок — равномерное движение: v = 8 м/с; a2 = 0.
Третий участок — торможение до остановки (равнозамедленное движение).
Путь, пройденный за время движения, будет равен:
Пример 4. Тело, имевшее начальную скорость 36 км/ч, прошло 50 м до остановки. Считая движение равнозамедленным, определить время торможения.
Решение
Записываем уравнение скорости для равнозамедленного движения:
v = vо + at = 0.
Определяем начальную скорость в м/с: vо = 36*1000/3600 = 10 м/с.
Выразим ускорение (замедление) из уравнения скорости: a = - v0/t
Записываем уравнение пути: S = vot/2 + at2/2. После подстановки получим: S = vot/2
Определяем время до полной остановки (время торможения):
Пример 5. Точка движется прямолинейно согласно уравнению s = 20t – 5t2 (s — м, t — с). Построить графики расстояний, скорости и ускорения для первых 4 с движения. Определить путь, пройденный точкой за 4 с, и описать движение точки.
Решение
1. Точка движется прямолинейно по уравнению s = 20t – 5t2 следовательно, скорость точки u = ds/d/t = 20 — 10t и ускорение a = at = dv/dt = —10 м/с2. Значит, движение точки равнопеременное (a = at = —10 м/c2 = const) с начальной скоростью v0 = 20 м/с.
Составим зависимость числовых значений s и v для первых 4 с движения
По приведенным числовым значениям построим графики расстояний (рис. а), скорости (рис. б) и ускорения (рис. в), выбрав масштабы для изображения по осям ординат расстояний s, скорости v и ускорения а, а также одинаковый для всех графиков масштаб времени по оси абсцисс. Например, если расстояние s = 5 м изображать на графике длиной отрезка ls = 10 мм, то 5м = μs*10мм, где коэффициент пропорциональности μs и есть масштаб по оси Os : μs = 5/10 = 0,5 м/мм (0,5 м в 1 мм); если модуль скорости v = 10 м/с изображать на графике длиной lv =10 мм, то 10 м/c = μv * 10 мм и масштаб по оси Ov μv = 1 м/(с-мм) (1 м/с в 1 мм); если модуль ускорения а = 10 м/с2 изображать отрезком la = 10 мм, то, аналогично предыдущему, масштаб по оси Оа μa = 1 м/(с2-мм) (1 м/с2 в 1 мм); и наконец, изображая промежуток времени Δt = 1 с отрезком μt = 10 мм, получим на всех графиках масштаб по осям Ot μt = 0,1 с/мм (0,1 с в 1 мм).
4. Из рассмотрения графиков следует, что в течение времени от 0 до 2 с точка движется равнозамедленно (скорость v и ускорение в течение этого промежутка времени имеют разные знаки, значит, их векторы направлены в противоположные стороны); в период времени от 2 до 4 с точка движется равноускоренно (скорость v и ускорение имеют одинаковые знаки, т. е. их векторы направлены в одну сторону).
За 4 с точка прошла путь so_4 = 40 м. Начав движение со скоростью v0 = 20 м/с, точка по прямой прошла 20 м, а затем вернулась в исходное положение, имея ту же скорость, но направленную в противоположную сторону.
Если условно принять ускорение свободного падения g = 10 мс2 и пренебречь сопротивлением воздуха, то можно сказать, что графики описывают движение точки, брошенной вертикально вверх со скоростью а0 = 20 м/с.
П
ример
6. Точка движется по траектории,
изображенной на рис. 1.44, а, согласно
уравнению s = 0,2t4
(s — в метрах, t —
в секундах). Определить скорость и
ускорение точки в положениях 1 и 2.
