- •Оглавление
- •Тема 1.3. Пара сил и момент силы относительно точки 35
- •Тема 1.4. Плоская система произвольно расположенных сил 42
- •Тема 1.4. Балочные системы. Определение реакций опор и моментов защемления 48
- •Тема 1.5. Пространственная система сил 67
- •Тема 1.6. Центр тяжести 75
- •Тема 1.7. Основные понятия кинематики. Кинематика точки 94
- •Тема 1.8. Кинематика точки 97
- •Тема 1.9. Простейшие движения твердого тела 107
- •Раздел I. Теоретическая механика Введение
- •Лекция 1 Тема 1.1. Основные понятия и аксиомы статики Понятие о силе и системе сил
- •Задачи теоретической механики
- •Аксиомы статики
- •Связи и реакции связей
- •Шарнирная опора
- •Примеры решения задач
- •Решение
- •Решение
- •Решение
- •Решение
- •Контрольные вопросы и задания
- •Лекция 2 Тема 1.2. Плоская система сходящихся сил. Определение равнодействующей геометрическим способом
- •П лоская система сходящихся сил
- •Решение задач на равновесие геометрическим способом
- •Р ешение
- •Р ешение
- •Контрольные вопросы и задания
- •Лекция 3 Тема 1.2. Плоская система сходящихся сил. Определение равнодействующей аналитическим способом
- •Проекция силы на ось
- •Определение равнодействующей системы сил аналитическим способом
- •Условия равновесия плоской системы сходящихся сил в аналитической форме
- •Примеры решения задач
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Р ешение
- •Решение
- •Решение
- •Контрольные вопросы и задания
- •Тема 1.2. Статика. Проекции силы на ось
- •Практическое занятие №1. Плоская система сходящихся сил
- •Расчетные формулы
- •Решение
- •Решение
- •Момент силы относительно точки
- •Примеры решения задач
- •Решение
- •Решение
- •Решение
- •Р ешение
- •Решение
- •Р ешение
- •Решение
- •Контрольные вопросы и задания
- •Влияние точки приведения
- •Частные случаи приведения системы сил к точке
- •Условие равновесия произвольной плоской системы сил
- •Примеры решения задач
- •Контрольные вопросы и задания
- •Лекция 6 Тема 1.4. Балочные системы. Определение реакций опор и моментов защемления
- •Виды нагрузок и разновидности опор Виды нагрузок
- •Примеры решения задач
- •Р ешение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Контрольные вопросы и задания
- •Практическое занятие №2. Плоская система произвольно расположенных сил
- •Основные формулы и предпосылки расчета
- •Упражнения при подготовке к самостоятельной работе
- •Задание 1. Определить величины реакций в опоре защемленной балки. Провести проверку правильности решения.
- •Задание 1. Определить величины реакций в заделке. Провести проверку правильности решения.
- •Задание 2. Определить величины реакций в шарнирных опорах балки. Провести проверку правильности решения.
- •Тема 1.4. Статика. Произвольная плоская система сил
- •Пространственная сходящаяся система сил
- •Произвольная пространственная система сил
- •Примеры решения задач
- •Решение
- •Решение
- •Решение
- •Решение
- •Контрольные вопросы и задания
- •Тема 1.5. Статика. Пространственная система сил
- •Лекция 8 Тема 1.6. Центр тяжести
- •Теорема Вариньона
- •Решение
- •Центр параллельных сил
- •Сила тяжести
- •Точка приложения силы тяжести
- •Решение
- •Определение координат центра тяжести плоских фигур
- •Примеры решения задач
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Контрольные вопросы и задания
- •Практическое занятие 3. Центр тяжести.
- •Тема 1.6. Центр тяжести
- •Основные формулы и предпосылки расчета
- •Упражнения при подготовке к самостоятельной работе
- •Расчетно-графическая работа №4. Определение центра тяжести фигур.
- •Тема 1.6. Статика. Центр тяжести тела
- •Задание для самостоятельной работы 3.
- •Лекция 9 Тема 1.7. Основные понятия кинематики. Кинематика точки
- •Основные кинематические параметры
- •Примеры решения задач
- •Решение
- •Решение
- •Решение
- •Решение
- •Контрольные вопросы и задания
- •Лекция 10 Тема 1.8. Кинематика точки
- •Анализ видов и кинетических параметров движений
- •Кинематические графики
- •Примеры решения задач
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Контрольные вопросы и задания
- •Тема 1.5. Пространственная система сил 67
- •Темы 1.7, 1.8. Кинематика. Кинематика точки. Лекция 11 Тема 1.9. Простейшие движения твердого тела
- •Поступательное движение
- •Вращательное движение
- •Частные случаи вращательного движения
- •Скорости и ускорения точек вращающегося тела
- •Примеры решения задач
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Контрольные вопросы и задания
- •Практическое занятие №4. Кинематика точки. Простейшие движения твердого тела
- •Расчетные формулы для определения параметров поступательного движения тела
- •Расчетные формулы для определения параметров вращательного движения
- •Рекомендации для решения задач расчетно-графической работы
- •Расчетно-графическая работа №5. Определение параметров вращательного движения.
- •Тема 1.9. Кинематика. Простейшие движения твердого тела
- •Лекция 12 Тема 1.10. Сложное движение точки. Сложное движение твердого тела
- •Основные определения
- •Плоскопараллельное движение твердого тела
- •Метод разложения сложного движения на поступательное и вращательное
- •Метод определения мгновенного центра скоростей
- •Примеры решения задач
- •Решение
- •Решение
- •Плоскопараллельное движение тела
- •Решение
- •Решение
- •Р ешение
- •Решение
- •Контрольные вопросы и задания
- •Т емы 1.10, 1.11. Кинематика. Сложное движение точки. Сложное движение твердого тела лекция 13 Тема 1.12. Основные понятия и аксиомы динамики. Понятие о трении
- •Содержание и задачи динамики
- •Аксиомы динамики
- •Понятие о трении. Виды трения
- •Примеры решения задач
- •Решение
- •Р ешение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Контрольные вопросы и задания
- •Лекция 14 Тема 1.13. Движение материальной точки. Метод кинетостатики
- •Свободная и несвободная точки
- •Сила инерции
- •Принцип кинетостатики (принцип Даламбера)
- •Примеры решений задач
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Контрольные вопросы и задания
- •Темы 1.12, 1.13. Динамика. Движение материальной точки. Метод кинетостатики.
- •Лекция 15 Тема 1.14. Работа и мощность
- •Примеры решения задач
- •Решение
- •Решение
- •Решение
- •Решение
- •Р ешение
- •Коэффициент полезного действия
- •Примеры решения задач
- •Решение
- •Решение
- •Решение
- •Решение
- •Контрольные вопросы и задания
- •Тема 1.14. Динамика. Работа и мощность
- •Лекция 17 Тема 1.15. Общие теоремы динамики
- •Теорема об изменении количества движения
- •Теорема об изменении кинетической энергии
- •Основы динамики системы материальных точек
- •Примеры решения задач
- •Решение
- •Решение
- •Решение
- •Решение
- •Р ешение
- •Решение
- •Решение
- •Решение
- •Контрольные вопросы и задания
- •Расчетно-графическая работа №6. Работа и мощность. Общие теоремы динамики
- •Расчетные формулы
- •Темы 1.14 и 1.15. Динамика. Работа и мощность. Общие теоремы динамики
Задачи теоретической механики
Теоретическая механика — наука о механическом движении материальных твердых тел и их взаимодействии. Механическое движение понимается как перемещение тела в пространстве и во времени по отношению к другим телам, в частности к Земле.
Для удобства изучения теоретическую механику подразделяют на статику, кинематику и динамику.
Статика изучает условия равновесия тел под действием сил.
Кинематика рассматривает движение тел как перемещение в пространстве; характеристики тел и причины, вызывающие движение, не рассматриваются.
Динамика изучает движение тел под действием сил.
В отличие от физики теоретическая механика изучает законы движения некоторых абстрактных абсолютно твердых тел: здесь материалы, форма тел существенного значения не имеют. При движении абсолютно твердое тело не деформируется и не разрушается. В случае, когда размерами тела можно пренебречь, тело заменяют материальной точкой. Это упрощение, принятое в теоретической механике, значительно облегчает решение задач о движении.
Аксиомы статики
В
результате обобщения человеческого
опыта были установлены
общие закономерности механического
движения, выраженные в виде законов и
теорем. Все теоремы и уравнения статики
выводятся из нескольких исходных
положений. Эти положения называют
аксиомами статики.
Первая аксиома. Под действием уравновешенной системы сил абсолютно твердое тело или материальная точка находятся в равновесии или движутся равномерно и прямолинейно (закон инерции).
Вторая аксиома. Две силы, равные по модулю и направленные по одной прямой в разные стороны, уравновешиваются (рис. 1.2).
Третья аксиома. Не нарушая механического состояния тела, можно добавить или убрать уравновешенную систему сил (принцип отбрасывания системы сил, эквивалентной нулю) (рис. 1.3).
Четвертая аксиома (правило параллелограмма сил). Равнодействующая двух сил, приложенных в одной точке, приложена в той же точке и является диагональю параллелограмма, построенного на этих силах как на сторонах (рис. 1.4).
Вместо параллелограмма можно построить треугольник сил: силы вычерчивают одну за другой в любом порядке; равнодействующая двух сил соединяет начало первой силы с концом второй.
Пятая аксиома. При взаимодействии тел всякому действию соответствует равное и противоположно направленное противодействие (рис. 1.5).
Силы действующие и противодействующие всегда приложены к разным телам, поэтому они не уравновешиваются.
Силы, с которыми два тела действуют друг на друга, всегда равны по модулю и направлены вдоль одной прямой в разные стороны.
Следствие из второй и третьей аксиом. Силу, действующую на твердое тело, можно перемещать вдоль линии ее действия (рис. 1.6).
Сила F приложена в точке А. Требуется перенести ее в точку В.
И
спользуя
третью аксиому, добавим в точке В
уравновешенную систему сил (F';
F").
Образуется уравновешенная по второй
аксиоме система сил (F;
F").
Убираем ее и получим в точке В силу F",
равную заданной F.
Связи и реакции связей
Все законы и теоремы статики справедливы для свободного твердого тела.
Все тела делятся на свободные и связанные.
Свободные тела — тела, перемещение которых не ограничено.
Связанные тела — тела, перемещение которых ограничено другими телами.
Тела, ограничивающие перемещение других тел, называют связями.
Силы, действующие от связей и препятствующие перемещению, называют реакциями связей.
Реакция связи всегда направлена с той стороны, куда нельзя перемещаться.
В
сякое
связанное тело можно представить
свободным, если связи заменить их
реакциями (принцип освобождения от
связей).
Все связи можно разделить на несколько типов.
Связь — гладкая опора (без трения). Реакция опоры приложена в точке опоры и всегда направлена перпендикулярно опоре (рис. 1.7).
Гибкая связь (нить, веревка, трос, цепь). Груз подвешен на двух нитях (рис. 1.8).
Реакция нити направлена вдоль нити от тела, при этом нить может быть только растянута.
Жесткий стержень.
На схемах стержни изображают толстой сплошной линией (рис. 1.9).
Стержень может быть сжат или растянут. Реакция стержня направлена вдоль стержня.
Стержень работает на растяжение или сжатие. Точное направление реакции определяют, мысленно убрав стержень и рассмотрев возможные перемещения тела без этой связи.
Возможным перемещением точки называется такое бесконечно малое мысленное перемещение, которое допускается в данный момент наложенными на него связями.
Убираем стержень 1, в этом случае стержень 2 падает вниз. Следовательно, сила от стержня 1 (реакция) направлена вверх. Убираем стержень 2. В этом случае точка А опускается вниз, отодвигаясь от стены. Следовательно, реакция стержня 2 направлена к стене.
