- •Оглавление
- •Тема 1.3. Пара сил и момент силы относительно точки 35
- •Тема 1.4. Плоская система произвольно расположенных сил 42
- •Тема 1.4. Балочные системы. Определение реакций опор и моментов защемления 48
- •Тема 1.5. Пространственная система сил 67
- •Тема 1.6. Центр тяжести 75
- •Тема 1.7. Основные понятия кинематики. Кинематика точки 94
- •Тема 1.8. Кинематика точки 97
- •Тема 1.9. Простейшие движения твердого тела 107
- •Раздел I. Теоретическая механика Введение
- •Лекция 1 Тема 1.1. Основные понятия и аксиомы статики Понятие о силе и системе сил
- •Задачи теоретической механики
- •Аксиомы статики
- •Связи и реакции связей
- •Шарнирная опора
- •Примеры решения задач
- •Решение
- •Решение
- •Решение
- •Решение
- •Контрольные вопросы и задания
- •Лекция 2 Тема 1.2. Плоская система сходящихся сил. Определение равнодействующей геометрическим способом
- •П лоская система сходящихся сил
- •Решение задач на равновесие геометрическим способом
- •Р ешение
- •Р ешение
- •Контрольные вопросы и задания
- •Лекция 3 Тема 1.2. Плоская система сходящихся сил. Определение равнодействующей аналитическим способом
- •Проекция силы на ось
- •Определение равнодействующей системы сил аналитическим способом
- •Условия равновесия плоской системы сходящихся сил в аналитической форме
- •Примеры решения задач
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Р ешение
- •Решение
- •Решение
- •Контрольные вопросы и задания
- •Тема 1.2. Статика. Проекции силы на ось
- •Практическое занятие №1. Плоская система сходящихся сил
- •Расчетные формулы
- •Решение
- •Решение
- •Момент силы относительно точки
- •Примеры решения задач
- •Решение
- •Решение
- •Решение
- •Р ешение
- •Решение
- •Р ешение
- •Решение
- •Контрольные вопросы и задания
- •Влияние точки приведения
- •Частные случаи приведения системы сил к точке
- •Условие равновесия произвольной плоской системы сил
- •Примеры решения задач
- •Контрольные вопросы и задания
- •Лекция 6 Тема 1.4. Балочные системы. Определение реакций опор и моментов защемления
- •Виды нагрузок и разновидности опор Виды нагрузок
- •Примеры решения задач
- •Р ешение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Контрольные вопросы и задания
- •Практическое занятие №2. Плоская система произвольно расположенных сил
- •Основные формулы и предпосылки расчета
- •Упражнения при подготовке к самостоятельной работе
- •Задание 1. Определить величины реакций в опоре защемленной балки. Провести проверку правильности решения.
- •Задание 1. Определить величины реакций в заделке. Провести проверку правильности решения.
- •Задание 2. Определить величины реакций в шарнирных опорах балки. Провести проверку правильности решения.
- •Тема 1.4. Статика. Произвольная плоская система сил
- •Пространственная сходящаяся система сил
- •Произвольная пространственная система сил
- •Примеры решения задач
- •Решение
- •Решение
- •Решение
- •Решение
- •Контрольные вопросы и задания
- •Тема 1.5. Статика. Пространственная система сил
- •Лекция 8 Тема 1.6. Центр тяжести
- •Теорема Вариньона
- •Решение
- •Центр параллельных сил
- •Сила тяжести
- •Точка приложения силы тяжести
- •Решение
- •Определение координат центра тяжести плоских фигур
- •Примеры решения задач
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Контрольные вопросы и задания
- •Практическое занятие 3. Центр тяжести.
- •Тема 1.6. Центр тяжести
- •Основные формулы и предпосылки расчета
- •Упражнения при подготовке к самостоятельной работе
- •Расчетно-графическая работа №4. Определение центра тяжести фигур.
- •Тема 1.6. Статика. Центр тяжести тела
- •Задание для самостоятельной работы 3.
- •Лекция 9 Тема 1.7. Основные понятия кинематики. Кинематика точки
- •Основные кинематические параметры
- •Примеры решения задач
- •Решение
- •Решение
- •Решение
- •Решение
- •Контрольные вопросы и задания
- •Лекция 10 Тема 1.8. Кинематика точки
- •Анализ видов и кинетических параметров движений
- •Кинематические графики
- •Примеры решения задач
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Контрольные вопросы и задания
- •Тема 1.5. Пространственная система сил 67
- •Темы 1.7, 1.8. Кинематика. Кинематика точки. Лекция 11 Тема 1.9. Простейшие движения твердого тела
- •Поступательное движение
- •Вращательное движение
- •Частные случаи вращательного движения
- •Скорости и ускорения точек вращающегося тела
- •Примеры решения задач
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Контрольные вопросы и задания
- •Практическое занятие №4. Кинематика точки. Простейшие движения твердого тела
- •Расчетные формулы для определения параметров поступательного движения тела
- •Расчетные формулы для определения параметров вращательного движения
- •Рекомендации для решения задач расчетно-графической работы
- •Расчетно-графическая работа №5. Определение параметров вращательного движения.
- •Тема 1.9. Кинематика. Простейшие движения твердого тела
- •Лекция 12 Тема 1.10. Сложное движение точки. Сложное движение твердого тела
- •Основные определения
- •Плоскопараллельное движение твердого тела
- •Метод разложения сложного движения на поступательное и вращательное
- •Метод определения мгновенного центра скоростей
- •Примеры решения задач
- •Решение
- •Решение
- •Плоскопараллельное движение тела
- •Решение
- •Решение
- •Р ешение
- •Решение
- •Контрольные вопросы и задания
- •Т емы 1.10, 1.11. Кинематика. Сложное движение точки. Сложное движение твердого тела лекция 13 Тема 1.12. Основные понятия и аксиомы динамики. Понятие о трении
- •Содержание и задачи динамики
- •Аксиомы динамики
- •Понятие о трении. Виды трения
- •Примеры решения задач
- •Решение
- •Р ешение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Контрольные вопросы и задания
- •Лекция 14 Тема 1.13. Движение материальной точки. Метод кинетостатики
- •Свободная и несвободная точки
- •Сила инерции
- •Принцип кинетостатики (принцип Даламбера)
- •Примеры решений задач
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Контрольные вопросы и задания
- •Темы 1.12, 1.13. Динамика. Движение материальной точки. Метод кинетостатики.
- •Лекция 15 Тема 1.14. Работа и мощность
- •Примеры решения задач
- •Решение
- •Решение
- •Решение
- •Решение
- •Р ешение
- •Коэффициент полезного действия
- •Примеры решения задач
- •Решение
- •Решение
- •Решение
- •Решение
- •Контрольные вопросы и задания
- •Тема 1.14. Динамика. Работа и мощность
- •Лекция 17 Тема 1.15. Общие теоремы динамики
- •Теорема об изменении количества движения
- •Теорема об изменении кинетической энергии
- •Основы динамики системы материальных точек
- •Примеры решения задач
- •Решение
- •Решение
- •Решение
- •Решение
- •Р ешение
- •Решение
- •Решение
- •Решение
- •Контрольные вопросы и задания
- •Расчетно-графическая работа №6. Работа и мощность. Общие теоремы динамики
- •Расчетные формулы
- •Темы 1.14 и 1.15. Динамика. Работа и мощность. Общие теоремы динамики
Примеры решения задач
Пример 1. Дано уравнение движения точки: S = 0,36t2 + 0,18t. Определить скорость точки в конце третьей секунды движения и среднюю скорость за первые 3 секунды.
Решение
Уравнение скорости
S' = 2 • 0,36t + 0,18; v = 0,72t + 0,18.
2. Скорость в конце третьей секунды (t = Зс) v3 = 0,72 * 3 + 0,18 = 2,34м/с.
3.Средняя скорость Vср = dS/dt = (0,36 • 32+ 0,18 * 3)/3 = 1,26 м/с.
Пример 2. Точка движется по кривой радиуса г = 10 м согласно уравнению S = 2,5t2 + 1,2t + 2,5 (рис. 9.6).
Определить полное ускорение точки в конце второй секунды движения и указать направление касательной и нормальной составляющих ускорения в точке М.
Решение
1. Касательное ускорение определяется как at = dV/dt
Уравнение скорости: v = dS/dt
Скорость будет равна v = 2 * 2,5t + 1,2; v = 5t + 1,2 (м/с).
Касательное ускорение: аt = v' = 5 м/с2.
Вывод: касательное ускорение не зависит от времени, оно постоянно.
2. Нормальное ускорение: ап = v2/r
Скорость на второй секунде будет равна v2 = 5*2 + 1,2 = 11,2 м/с.
Величина нормального ускорения: ап2 = (11,2)2/10 = 12,54 м/с2 .
3. Полное ускорение:
Полное ускорение в конце второй секунды:
4. Нормальное ускорение направлено перпендикулярно скорости к центру дуги.
Касательное ускорение направлено по касательной к кривой и совпадает с направлением скорости, т. к. касательное ускорение — положительная величина (скорость растет).
Пример 3. По дуге, равной 1/4 длины окружности радиуса г = 16м (рис. 1.110), из положения А0 в положение A1 движется точка согласно уравнению s = πt2. Определить скорость точки в момент, когда она проходит середину длины дуги A0A1, и в момент достижения положения A1.
Решение
Е
сли
длина дуги А0А1
равна 1/4 длины окружности,
то середина дуги А находится от
начала отсчета А0 на расстоянии
1/8 окружности,
т, е.
Из заданного уравнения движения s = πt2 находим, что точка после начала движения достигает середины дуги через промежуток времени
Продифференцировав уравнение движения, найдем уравнение скорости:
Подставив значение t = 2 с в уравнение скорости, найдем
5. Проводим в точке А (середину дуги A0A1) касательную к траектории и изобразим вектор скорости v (рис. 1.110).
Скорость точки в конце траектории (в положении A1) рекомендуется найти самостоятельно. (Ответ: 17,8 м/с.)
Пример 4. Для точки, движение которой рассматривалось в примере 3, определить ускорения а и a1 соответственно для положений точки в А и A1.
Решение
1. Точка движется согласно уравнению s = πt2; следовательно, v =2st и из формулы
м
одуль
касательного ускорения от времени
не зависит, значит при любом положении
точки на траектории ее касательное
ускорение at
= 6,28 м/с2.
Как известно из примера 1.19, в момент, когда точка занимает на траектории положение А, ее скорость v = 4π = 12,6 м/с. Следовательно, в этот момент значение нормального ускорения
Находим направление ускорения а точки в момент, когда она проходит положение A, используя третью из формул (рис. 1.113):
Находим модуль ускорения точки, используя первую из формул (1.90):
Рекомендуется самостоятельно проверить полученный результат по формуле (1.89), а затем найти модуль и направление ускорения точки в положении (Ответ: at=20,8 м/с2; а1«72°30'.)
