- •Оглавление
- •Тема 1.3. Пара сил и момент силы относительно точки 35
- •Тема 1.4. Плоская система произвольно расположенных сил 42
- •Тема 1.4. Балочные системы. Определение реакций опор и моментов защемления 48
- •Тема 1.5. Пространственная система сил 67
- •Тема 1.6. Центр тяжести 75
- •Тема 1.7. Основные понятия кинематики. Кинематика точки 94
- •Тема 1.8. Кинематика точки 97
- •Тема 1.9. Простейшие движения твердого тела 107
- •Раздел I. Теоретическая механика Введение
- •Лекция 1 Тема 1.1. Основные понятия и аксиомы статики Понятие о силе и системе сил
- •Задачи теоретической механики
- •Аксиомы статики
- •Связи и реакции связей
- •Шарнирная опора
- •Примеры решения задач
- •Решение
- •Решение
- •Решение
- •Решение
- •Контрольные вопросы и задания
- •Лекция 2 Тема 1.2. Плоская система сходящихся сил. Определение равнодействующей геометрическим способом
- •П лоская система сходящихся сил
- •Решение задач на равновесие геометрическим способом
- •Р ешение
- •Р ешение
- •Контрольные вопросы и задания
- •Лекция 3 Тема 1.2. Плоская система сходящихся сил. Определение равнодействующей аналитическим способом
- •Проекция силы на ось
- •Определение равнодействующей системы сил аналитическим способом
- •Условия равновесия плоской системы сходящихся сил в аналитической форме
- •Примеры решения задач
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Р ешение
- •Решение
- •Решение
- •Контрольные вопросы и задания
- •Тема 1.2. Статика. Проекции силы на ось
- •Практическое занятие №1. Плоская система сходящихся сил
- •Расчетные формулы
- •Решение
- •Решение
- •Момент силы относительно точки
- •Примеры решения задач
- •Решение
- •Решение
- •Решение
- •Р ешение
- •Решение
- •Р ешение
- •Решение
- •Контрольные вопросы и задания
- •Влияние точки приведения
- •Частные случаи приведения системы сил к точке
- •Условие равновесия произвольной плоской системы сил
- •Примеры решения задач
- •Контрольные вопросы и задания
- •Лекция 6 Тема 1.4. Балочные системы. Определение реакций опор и моментов защемления
- •Виды нагрузок и разновидности опор Виды нагрузок
- •Примеры решения задач
- •Р ешение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Контрольные вопросы и задания
- •Практическое занятие №2. Плоская система произвольно расположенных сил
- •Основные формулы и предпосылки расчета
- •Упражнения при подготовке к самостоятельной работе
- •Задание 1. Определить величины реакций в опоре защемленной балки. Провести проверку правильности решения.
- •Задание 1. Определить величины реакций в заделке. Провести проверку правильности решения.
- •Задание 2. Определить величины реакций в шарнирных опорах балки. Провести проверку правильности решения.
- •Тема 1.4. Статика. Произвольная плоская система сил
- •Пространственная сходящаяся система сил
- •Произвольная пространственная система сил
- •Примеры решения задач
- •Решение
- •Решение
- •Решение
- •Решение
- •Контрольные вопросы и задания
- •Тема 1.5. Статика. Пространственная система сил
- •Лекция 8 Тема 1.6. Центр тяжести
- •Теорема Вариньона
- •Решение
- •Центр параллельных сил
- •Сила тяжести
- •Точка приложения силы тяжести
- •Решение
- •Определение координат центра тяжести плоских фигур
- •Примеры решения задач
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Контрольные вопросы и задания
- •Практическое занятие 3. Центр тяжести.
- •Тема 1.6. Центр тяжести
- •Основные формулы и предпосылки расчета
- •Упражнения при подготовке к самостоятельной работе
- •Расчетно-графическая работа №4. Определение центра тяжести фигур.
- •Тема 1.6. Статика. Центр тяжести тела
- •Задание для самостоятельной работы 3.
- •Лекция 9 Тема 1.7. Основные понятия кинематики. Кинематика точки
- •Основные кинематические параметры
- •Примеры решения задач
- •Решение
- •Решение
- •Решение
- •Решение
- •Контрольные вопросы и задания
- •Лекция 10 Тема 1.8. Кинематика точки
- •Анализ видов и кинетических параметров движений
- •Кинематические графики
- •Примеры решения задач
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Контрольные вопросы и задания
- •Тема 1.5. Пространственная система сил 67
- •Темы 1.7, 1.8. Кинематика. Кинематика точки. Лекция 11 Тема 1.9. Простейшие движения твердого тела
- •Поступательное движение
- •Вращательное движение
- •Частные случаи вращательного движения
- •Скорости и ускорения точек вращающегося тела
- •Примеры решения задач
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Контрольные вопросы и задания
- •Практическое занятие №4. Кинематика точки. Простейшие движения твердого тела
- •Расчетные формулы для определения параметров поступательного движения тела
- •Расчетные формулы для определения параметров вращательного движения
- •Рекомендации для решения задач расчетно-графической работы
- •Расчетно-графическая работа №5. Определение параметров вращательного движения.
- •Тема 1.9. Кинематика. Простейшие движения твердого тела
- •Лекция 12 Тема 1.10. Сложное движение точки. Сложное движение твердого тела
- •Основные определения
- •Плоскопараллельное движение твердого тела
- •Метод разложения сложного движения на поступательное и вращательное
- •Метод определения мгновенного центра скоростей
- •Примеры решения задач
- •Решение
- •Решение
- •Плоскопараллельное движение тела
- •Решение
- •Решение
- •Р ешение
- •Решение
- •Контрольные вопросы и задания
- •Т емы 1.10, 1.11. Кинематика. Сложное движение точки. Сложное движение твердого тела лекция 13 Тема 1.12. Основные понятия и аксиомы динамики. Понятие о трении
- •Содержание и задачи динамики
- •Аксиомы динамики
- •Понятие о трении. Виды трения
- •Примеры решения задач
- •Решение
- •Р ешение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Контрольные вопросы и задания
- •Лекция 14 Тема 1.13. Движение материальной точки. Метод кинетостатики
- •Свободная и несвободная точки
- •Сила инерции
- •Принцип кинетостатики (принцип Даламбера)
- •Примеры решений задач
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Контрольные вопросы и задания
- •Темы 1.12, 1.13. Динамика. Движение материальной точки. Метод кинетостатики.
- •Лекция 15 Тема 1.14. Работа и мощность
- •Примеры решения задач
- •Решение
- •Решение
- •Решение
- •Решение
- •Р ешение
- •Коэффициент полезного действия
- •Примеры решения задач
- •Решение
- •Решение
- •Решение
- •Решение
- •Контрольные вопросы и задания
- •Тема 1.14. Динамика. Работа и мощность
- •Лекция 17 Тема 1.15. Общие теоремы динамики
- •Теорема об изменении количества движения
- •Теорема об изменении кинетической энергии
- •Основы динамики системы материальных точек
- •Примеры решения задач
- •Решение
- •Решение
- •Решение
- •Решение
- •Р ешение
- •Решение
- •Решение
- •Решение
- •Контрольные вопросы и задания
- •Расчетно-графическая работа №6. Работа и мощность. Общие теоремы динамики
- •Расчетные формулы
- •Темы 1.14 и 1.15. Динамика. Работа и мощность. Общие теоремы динамики
Примеры решения задач
П
ример
1. На тело в форме куба с ребром а
= 10 см действуют три силы (рис. 7.6).
Определить моменты сил относительно
осей координат, совпадающих с ребрами
куба.
Решение
1. Моменты сил относительно оси Ох:
2. Моменты сил относительно оси Оу.
Пример 2. На горизонтальном валу закреплены два колеса, г1 = 0,4 м; г2 = 0,8 м. Остальные размеры — на рис. 7.7. К колесу 1 приложена сила F1, к колесу 2 — силы F2 = 12 кН, F3 = 4кН.
Определить силу F1 и реакции в шарнирах А и В в состоянии равновесия.
Напомним:
При равновесии выполняются шесть уравнений равновесия.
Уравнения моментов следует составлять относительно опор А и В.
Силы F2\\Ox; F2\\Oy; F3\\Oy.
Моменты этих сил относительно соответствующих осей равны нулю.
Р
асчет
следует завершить проверкой, использовав
дополнительные уравнения равновесия.
Решение
1. Определяем силу F\, составив уравнение моментов сил относительно оси Oz:
2. Определяем реакции в опоре А. На опоре действуют две составляющие реакции (YA; XA).
Составляем уравнение моментов сил относительно оси Ох' (в опоре В).
Поворот вокруг оси Ох' не происходит:
Знак «минус» означает, что реакция направлена в противоположную сторону.
Поворот вокруг оси Оу' не происходит, составляем уравнение моментов сил относительно оси Оу' (в опоре В):
3.Определяем реакции в опоре В. На опоре действуют две составляющие реакции (XB, YB). Составляем уравнение моментов сил относительно оси Ох (опора А):
Составляем уравнение моментов относительно оси Оу (опора А):
4.Проверка. Используем уравнения проекций:
Расчёт выполнен верно.
Пример 3. Определить численное значение силы P1, при котором вал ВС (рис. 1.21, а) будет находиться в равновесии. При найденном значении силы Р1 определить опорные реакции.
Д
ействующие
на зубчатые колеса силы Р и
Р1 направлены
по касательным к начальным окружностям
колес; силы Т и Т1
— по радиусам колес; силы А1
параллельны оси вала. Т = 0,36Р, 7Т1
= Р1; А1 = 0,12P1.
Решение
Опоры вала, изображенные на рис. 1.21, а, надо рассматривать как пространственные шарнирные опоры, препятствующие линейным перемещениям в направлениях осей и и v (выбранная система координат показана на рис. 1.21, б).
Освобождаем вал от связей и заменяем их действие реакциями VВ, НВ, VC, НС (рис. 1.21, б). Получили пространственную систему сил, для которой составляем уравнения равновесия, пользуясь выбранной системой координат (рис. 1.21,6):
где А1*1,25D/2 — момент относительно оси и силы A1, приложенной к правому зубчатому колесу.
Моменты относительно оси и сил Т1 и А1 (приложенных к среднему зубчатому колесу), Р1 (приложенной к правому зубчатому колесу) и Р равны нулю, так как силы Р, T1, Р1 параллельны оси и, а сила А1 пересекает ось и.
откуда VС = 0,37P;
или
откуда VB=0,37P.
Составим проверочное уравнение:
следовательно, реакции VB и VС определены верно;
где А1* 1,25D/2 — момент относительно оси v силы А1, приложенной к среднему зубчатому колесу.
Моменты относительно оси v сил Т, Р1 (приложенной к среднему зубчатому колесу), А1 и Т1 (приложенных к правому зубчатому колесу) равны нулю, так как силы Т, Р1, Т1 параллельны оси v, сила А1 пересекает ось v.
откуда HC = 0,81Р;
или
откуда HС = 1,274Р
Составим проверочное уравнение:
следовательно, реакции НВ и НС определены верно.
В заключение отметим, что опорные реакции получились со знаком плюс. Это указывает на то, что выбранные направления VB, НВ, VC и НС совпадают с действительными направлениями реакций связей.
П
ример
4. Сила давления шатуна парового
двигателя Р = 25 кН передается на
середину шейки коленчатого вала в
точке D под углом
α = 30° к горизонту при вертикальном
расположении щек колена (рис. 1.22). На
конец вала насажен шкив ременной
передачи. Натяжение ведущей ветви
ремня в два раза больше, чем ведомой,
т.е. S1 = 2S2.
Сила тяжести маховика G
= 10 кН.
Определить натяжения ветвей ременной передачи и реакции подшипников А и В, пренебрегая массой вала.
